13 results on '"D'Errico G"'
Search Results
2. Design of a hybrid nanoscaled skin photoprotector by boosting the antioxidant properties of food waste-derived lignin through molecular combination with TiO 2 nanoparticles.
- Author
-
Venezia V, Pota G, Argenziano R, Alfieri ML, Moccia F, Ferrara F, Pecorelli A, Esposito R, Di Girolamo R, D'Errico G, Valacchi G, Luciani G, Panzella L, and Napolitano A
- Abstract
TiO
2 nanoparticles loaded with pistachio shell lignin (8 % and 29 % w/w) were prepared by a hydrothermal wet chemistry approach. The efficient interaction at the molecular level of the biomacromolecule and inorganic component was demonstrated by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Visible (UV-Vis), Fourier transform infrared (FT-IR), dynamic light scattering (DLS), and electron paramagnetic resonance (EPR) analysis. The synergistic combination of lignin and TiO2 nanoparticles played a key role in the functional properties of the hybrid material, which exhibited boosted features compared to the separate organic and inorganic phase. In particular, the hybrid TiO2 -lignin nanoparticles showed a broader UV-Vis protection range and remarkable antioxidant performance in aqueous media. They could also better protect human skin explants from the DNA damaging effect of UV radiations compared to TiO2 as indicated by lower levels of p-H2A.X, a marker of DNA damage, at 6 h from exposure. In addition, the samples could protect the skin against the structural damage occurring 24 h post UV radiations by preventing the loss of keratin 10. These results open new perspectives in the exploitation of food-waste derived phenolic polymers for the design of efficient antioxidant materials for skin photoprotection in a circular economy perspective., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
3. Assessment of Platelet Aggregation and Thrombin Generation in Patients with Familial Chylomicronemia Syndrome Treated with Volanesorsen: A Cross-Sectional Study.
- Author
-
Calcaterra IL, Santoro R, Vitelli N, Cirillo F, D'Errico G, Guerrino C, Cardiero G, Di Taranto MD, Fortunato G, Iannuzzo G, and Di Minno MND
- Abstract
Background: The antisense oligonucleotide against APOC3 mRNA volanesorsen was recently introduced to treat Familial Chylomicronemia Syndrome (FCS). Cases of decreased platelet count are reported among patients treated with volanesorsen. The aim of the study was to evaluate platelet function and thrombin generation (TG) assessment in FCS patients receiving volanesorsen. We performed a cross-sectional study on FCS patients treated with volanesorsen., Methods: Changes in platelet count PLC were assessed from baseline to Tw12 and Tw36. To assess TG, samples were processed by CAT (with PPP-reagent LOW). The results were expressed by the thrombogram graphic (thrombin variation over time); LagTime; endogenous thrombin potential (ETP); peak; time to reach peak (ttpeak), StartTail and Velocity Index. Platelet aggregation was assessed by testing different agonists using the turbidimetry method., Results: Four FCS patients and four matched healthy controls were included in the present study. Changes in PLC were 30% at Tw12 and 34% at Tw36. Thrombin generation results showed values in the normal range (for patients and controls, respectively, LagTime:10.42 ± 4.40 and 9.25 ± 0.99; ttPeak:14.33 ± 4.01 and 13.10 ± 0.67; StartTail: 32.13 ± 3.54 and 29.46 ± 1.69; Velocity Index: 20.21 ± 3.63 and 33.05 ± 13.21; ETP: 599.80 ± 73.47 and 900.2 ± 210.99; peak value: 76.84 ± 1.07 and 123.30 ± 39.45) and no significant difference between cases and controls. Platelet aggregation test showed values in range, with no significant difference compared to healthy controls., Conclusions: Our study showed for the first time that no significant changes in general hemostasis assessed by TG and in platelet function were observed in FCS patients receiving volanesorsen.
- Published
- 2024
- Full Text
- View/download PDF
4. Are mixtures of micro/nanoplastics more toxic than individual micro or nanoplastic contamination in the clam Ruditapes decussatus?
- Author
-
Ventura E, Gonçalves JM, Vilke JM, d'Errico G, Benedetti M, Regoli F, and Bebianno MJ
- Subjects
- Animals, Polystyrenes toxicity, Oxidative Stress, Plastics toxicity, Polyethylene toxicity, Bivalvia, Water Pollutants, Chemical toxicity, Microplastics toxicity, Nanoparticles toxicity
- Abstract
The abundance of micro (MPs) and nano (NPs) sized plastic particles in the ocean is concerning due to their harmful effects on marine life. The interactions between MPs and NPs in the marine environment and their impact on marine biota remain not fully understood. This study contributes with new insights into the interaction between polystyrene NPs (PSNPs) and polyethylene MPs (PEMPs) on the clam Ruditapes decussatus. Results showed ingestion of MPs and NPs by clams, with PSNPs demonstrating higher toxicity in hemolymph. While no genotoxicity was observed, clams treated with MPs and the mixture showed increased acetylcolinesterase (AchE) activity over time. Additionally, the antioxidant defense system mitigated oxidative stress, suggesting effective neutralization of reactive oxygen species. Hazard assessment indicated the greatest impact on clam digestive glands after ten days of exposure, with an antagonistic interaction between MPs and NPs noted., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. New insights into the impact of leachates from in-field collected plastics on aquatic invertebrates and vertebrates.
- Author
-
Gambardella C, Miroglio R, Costa E, Cachot J, Morin B, Clérandeau C, Rotander A, Rocco K, d'Errico G, Almeda R, Alonso O, Grau E, Piazza V, Pittura L, Benedetti M, Regoli F, Faimali M, and Garaventa F
- Subjects
- Animals, Mediterranean Sea, Aliivibrio fischeri drug effects, Environmental Monitoring, Atlantic Ocean, Ecotoxicology, Vertebrates, Oryzias, Paracentrotus drug effects, Plastics toxicity, Water Pollutants, Chemical toxicity, Aquatic Organisms drug effects, Invertebrates drug effects
- Abstract
The impact of leachates from micronized beached plastics of the Mediterranean Sea and Atlantic Ocean on coastal marine ecosystems was investigated by using a multidisciplinary approach. Chemical analysis and ecotoxicological tests on phylogenetically distant species were performed on leachates from the following plastic categories: bottles, pellets, hard plastic (HP) containers, fishing nets (FN) and rapido trawling rubber (RTR). The bacteria Alivibrio fischeri, the nauplii of the crustaceans Amphibalanus amphitrite and Acartia tonsa, the rotifer Brachionus plicatilis, the embryos of the sea urchin Paracentrotus lividus, the ephyrae of the jellyfish Aurelia sp. and the larvae of the medaka Oryzias latipes were exposed to different concentrations of leachates to evaluate lethal and sub-lethal effects. Thirty-one additives were identified in the plastic leachates; benzophenone, benzyl butyl phthalate and ethylparaben were present in all leachates. Ecotoxicity of leachates varied among plastic categories and areas, being RTR, HP and FN more toxic than plastic bottles and pellets to several marine invertebrates. The ecotoxicological results based on 13 endpoints were elaborated within a quantitative weight of evidence (WOE) model, providing a synthetic hazard index for each data typology, before their integrations in an environmental risk index. The WOE assigned a moderate and slight hazard to organisms exposed to leachates of FN and HP collected in the Mediterranean Sea respectively, and a moderate hazard to leachates of HP from the Atlantic Ocean. No hazard was found for pellet, bottles and RTR. These findings suggest that an integrated approach based on WOE on a large set of bioassays is recommended to get a more reliable assessment of the ecotoxicity of beached-plastic leachates. In addition, the additives leached from FN and HP should be further investigated to reduce high concentrations and additive types that could impact marine ecosystem health., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
6. Adaptive Changes in Group 2 Metabotropic Glutamate Receptors Underlie the Deficit in Recognition Memory Induced by Methamphetamine in Mice.
- Author
-
Busceti CL, Di Menna L, Castaldi S, D'Errico G, Taddeucci A, Bruno V, Fornai F, Pittaluga A, Battaglia G, and Nicoletti F
- Subjects
- Animals, Male, Memory Disorders metabolism, Mice, Prefrontal Cortex drug effects, Prefrontal Cortex metabolism, Methamphetamine pharmacology, Receptors, Metabotropic Glutamate metabolism, Recognition, Psychology drug effects, Recognition, Psychology physiology, Mice, Knockout, Mice, Inbred C57BL, Central Nervous System Stimulants pharmacology
- Abstract
Cognitive dysfunction is associated with methamphetamine use disorder (MUD). Here, we used genetic and pharmacological approaches to examine the involvement of either Group 2 metabotropic glutamate (mGlu2) or mGlu3 receptors in memory deficit induced by methamphetamine in mice. Methamphetamine treatment (1 mg/kg, i.p., once a day for 5 d followed by 7 d of withdrawal) caused an impaired performance in the novel object recognition test in wild-type mice, but not in mGlu2
-/- or mGlu3-/- mice. Memory deficit in wild-type mice challenged with methamphetamine was corrected by systemic treatment with selectively negative allosteric modulators of mGlu2 or mGlu3 receptors (compounds VU6001966 and VU0650786, respectively). Methamphetamine treatment in wild-type mice caused large increases in levels of mGlu2/3 receptors, the Type 3 activator of G-protein signaling (AGS3), Rab3A, and the vesicular glutamate transporter, vGlut1, in the prefrontal cortex (PFC). Methamphetamine did not alter mGlu2/3-mediated inhibition of cAMP formation but abolished the ability of postsynaptic mGlu3 receptors to boost mGlu5 receptor-mediated inositol phospholipid hydrolysis in PFC slices. Remarkably, activation of presynaptic mGlu2/3 receptors did not inhibit but rather amplified depolarization-induced [3 H]-D-aspartate release in synaptosomes prepared from the PFC of methamphetamine-treated mice. These findings demonstrate that exposure to methamphetamine causes changes in the expression and function of mGlu2 and mGlu3 receptors, which might alter excitatory synaptic transmission in the PFC and raise the attractive possibility that selective inhibitors of mGlu2 or mGlu3 receptors (or both) may be used to improve cognitive dysfunction in individuals affected by MUD., (Copyright © 2024 Busceti et al.)- Published
- 2024
- Full Text
- View/download PDF
7. Looking beyond the obvious: The ecotoxicological impact of the leachate from fishing nets and cables in the marine mussel Mytilus galloprovincialis.
- Author
-
Vilke JM, Fonseca TG, Alkimin GD, Gonçalves JM, Edo C, Errico G, Seilitz FS, Rotander A, Benedetti M, Regoli F, Lüchmann KH, and Bebianno MJ
- Subjects
- Animals, Oxidative Stress drug effects, Biomarkers metabolism, Antioxidants metabolism, Ecotoxicology, DNA Damage drug effects, Mytilus drug effects, Mytilus metabolism, Water Pollutants, Chemical toxicity
- Abstract
Once in the marine environment, fishing nets and cables undergo weathering, breaking down into micro and nano-size particles and leaching plastic additives, which negatively affect marine biota. This study aims to unravel the ecotoxicological impact of different concentrations of leachate obtained from abandoned or lost fishing nets and cables in the mussel Mytilus galloprovincialis under long-term exposure (28 days). Biochemical biomarkers linked to antioxidant defense system, xenobiotic biotransformation, oxidative damage, genotoxicity, and neurotoxicity were evaluated in different mussel tissues. The chemical nature of the fishing nets and cables and the chemical composition of the leachate were assessed and metals, plasticizers, UV stabilizers, flame retardants, antioxidants, dyes, flavoring agents, preservatives, intermediates and photo initiators were detected. The leachate severely affected the antioxidant and biotransformation systems in mussels' tissues. Following exposure to 1 mg·L
-1 of leachate, mussels' defense system was enhanced to prevent oxidative damage. In contrast, in mussels exposed to 10 and 100 mg·L-1 of leachate, defenses failed to overcome pro-oxidant molecules, resulting in genotoxicity and oxidative damage. Principal component analysis (PCA) and Weight of Evidence (WOE) evaluation confirmed that mussels were significantly affected by the leachate being the hazard of the leachate concentrations of 10 mg·L-1 ranked as major, while 1 and 100 mg·L-1 was moderate. These results highlighted that the leachate from fishing nets and cables can be a threat to the heath of the mussel M. galloprovincialis., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
8. Detection of KPC-216, a Novel KPC-3 Variant, in a Clinical Isolate of Klebsiella pneumoniae ST101 Co-Resistant to Ceftazidime-Avibactam and Cefiderocol.
- Author
-
Giufrè M, Errico G, Del Grosso M, Pagnotta M, Palazzotti B, Ballardini M, Pantosti A, Meledandri M, and Monaco M
- Abstract
Background: Carbapenemase-producing Klebsiella pneumoniae (CP-KP) represents a global threat to public health, with limited antimicrobial therapeutic options. In this study, we analyzed a ceftazidime/avibactam (CAZ-AVI)-resistant K. pneumoniae isolate obtained from a patient previously exposed to CAZ-AVI expressing a novel K. pneumoniae carbapenemase (KPC)-3 variant., Methods: Antimicrobial susceptibility testing was performed using reference broth microdilution. Whole-genome sequencing (WGS) was performed using Illumina and Nanopore Technologies. Short- and long-reads were combined with Unicycler. Assemblies were investigated for multilocus sequence typing (MLST), antimicrobial resistance genes, porins, and plasmids., Results: The K . pneumoniae isolate (KP_RM_1) was resistant to CAZ-AVI, expanded-spectrum cephalosporins, amikacin, ertapenem, and cefiderocol (FDC) but was susceptible to tigecycline, colistin, trimethoprim/sulfamethoxazole, meropenem-vaborbactam, and imipenem-relebactam. WGS revealed that the KP_RM_1 genome is composed of a single chromosome of 5 Mbp and five circular plasmids. Further analysis showed the presence of novel bla
KPC-216 located on a 72 kb plasmid. KPC-216 differs from KPC-3 by a Lysin (K) insertion at position 168 (+K168)., Conclusions: We report the identification of a new KPC-3 variant associated with CAZ-AVI resistance. The KPC variants associated with CAZ-AVI resistance should be determined to promptly inform clinicians and start the appropriate antimicrobial therapy.- Published
- 2024
- Full Text
- View/download PDF
9. Evolocumab Treatment in Dyslipidemic Patients Undergoing Coronary Artery Bypass Grafting: One-Year Safety and Efficacy Results.
- Author
-
Nasso G, Vignaroli W, Amodeo V, Bartolomucci F, Larosa C, Contegiacomo G, Demola MA, Girasoli C, Valenzano A, Fiore F, Bonifazi R, Triggiani V, Vitobello V, Errico G, Lamanna A, Hila D, Loizzo T, Franchino R, Sechi S, Valenti G, Diaferia G, Brigiani MS, Arima S, Angelelli M, Curcio A, Greco F, Greco E, Speziale G, and Santarpino G
- Abstract
Background: The inhibition of PCSK9 lowered LDL cholesterol levels, reducing the risk of cardiovascular events. However, the effect on patients who have undergone surgical myocardial revascularization has not yet been evaluated. Methods: From January 2017 to December 2022, 180 dyslipidemic patients who underwent coronary artery bypass were included in the study. Until December 2019, 100 patients optimized therapy with statin ± ezetimibe (SG). Since January 2020, 80 matched patients added treatment with Evolocumab every 2 weeks (EG). All 180 patients were followed-up at 3 and 12 months, comparing outcomes. Results: The two groups are homogenous. At 3 months and 1 year, a significant decrease in the parameter mean levels of LDL cholesterol and total cholesterol is detected in the Evolocumab group compared to the standard group. No mortality was detected in either group. No complications or drug discontinuation were recorded. In the SG group, five patients (5%) suffered a myocardial infarction during the 1-year follow-up. In the EG group, two patients (2.5%) underwent PTCA due to myocardial infarction. There is no significant difference in overall survival according to the new treatment ( p -value = 0.9), and the hazard ratio is equal to 0.94 (95% C.I.: [0.16-5.43]; p -value = 0.9397). Conclusions: The use of Evolocumab, which was started immediately after coronary artery bypass graft surgery, significantly reduced LDL cholesterol and total cholesterol levels compared to statin treatment alone and is completely safe. However, at one year of follow-up, this result did not have impact on the reduction in major clinical events.
- Published
- 2024
- Full Text
- View/download PDF
10. Ordered hierarchical superlattice amplifies coated-CeO 2 nanoparticles luminescence.
- Author
-
Gallucci N, Appavou MS, Cowieson N, D'Errico G, Di Girolamo R, Lettieri S, Sica F, Vitiello G, and Paduano L
- Abstract
Achieving a controlled preparation of nanoparticle superstructures with spatially periodic arrangement, also called superlattices, is one of the most intriguing and open questions in soft matter science. The interest in such regular superlattices originates from the potentialities in tailoring the physicochemical properties of the individual constituent nanoparticles, eventually leading to emerging behaviors and/or functionalities that are not exhibited by the initial building blocks. Despite progress, it is currently difficult to obtain such ordered structures; the influence of parameters, such as size, softness, interaction potentials, and entropy, are neither fully understood yet and not sufficiently studied for 3D systems. In this work, we describe the synthesis and characterization of spatially ordered hierarchical structures of coated cerium oxide nanoparticles in water suspension prepared by a bottom-up approach. Covering the CeO
2 surface with amphiphilic molecules having chains of appropriate length makes it possible to form ordered structures in which the particles occupy well-defined positions. In the present case superlattice arrangement is accompanied by an improvement in photoluminescence (PL) efficiency, as an increase in PL intensity of the superlattice structure of up to 400 % compared with that of randomly dispersed nanoparticles was observed. To the best of our knowledge, this is one of the first works in the literature in which the coexistence of 3D structures in solution, such as face-centered cubic (FCC) and Frank-Kasper (FK) phases, of semiconductor nanoparticles have been related to their optical properties., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
11. Designing bioinspired multifunctional nanoplatforms to support wound healing and skin regeneration: Mg-hydroxyapatite meets melanins.
- Author
-
Furlani F, Pota G, Rossi A, Luciani G, Campodoni E, Mocerino F, D'Errico G, Pezzella A, Panseri S, Vitiello G, and Sandri M
- Subjects
- Animals, Mice, Antioxidants pharmacology, Antioxidants chemistry, Wound Healing, Hydroxyapatites, Regeneration, Melanins chemistry, Indoles pharmacology, Indoles chemistry
- Abstract
Melanin is a multifunctional biological pigment that recently emerged as endowed with anti-inflammatory, antioxidant, and antimicrobial properties and with high potentialities in skin protection and regenerative medicine. Here, a biomimetic magnesium-doped nano-hydroxyapatite (MgHA) was synthesized and decorated with melanin molecules starting from two different monomeric precursors, i.e. 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and dopamine (DA), demonstrating to be able to polymerize on the surface of MgHA nanostructures, thus leading to a melanin coating. This functionalization was realized by a simple and green preparation method requiring mild conditions in an aqueous medium and room temperature. Complementary spectroscopy and electron imaging analyses were carried out to define the effective formation of a stable coating, the percentage of the organic compounds, and the structural properties of resulting melanin-coated nanostructures, which showed good antioxidant activity. The in vitro interaction with a cell model, i.e. mouse fibroblasts, was investigated. The excellent biocompatibility of all bioinspired nanostructures was confirmed from a suitable cell proliferation. Finally, the enhanced biological performances of the nanostructures coated with melanin from DHICA were confirmed by scratch assays. Jointly our findings indicated that low crystalline MgHA and melanin pigments can be efficiently combined, and the resulting nanostructures are promising candidates as multifunctional platforms for a more efficient approach for skin regeneration and protection., Competing Interests: Declaration of Competing Interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Giuseppe Vitiello reports financial support was provided by University of Naples Federico II., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
12. Cellular effects of microplastics are influenced by their dimension: Mechanistic relationships and integrated criteria for particles definition.
- Author
-
Nardi A, Pittura L, d'Errico G, Cesaroni D, Mongera F, Gorbi S, Benedetti M, and Regoli F
- Subjects
- Animals, Microplastics analysis, Plastics analysis, Polyethylene metabolism, Cholinergic Agents metabolism, Cholinergic Agents pharmacology, Mytilus metabolism, Water Pollutants, Chemical analysis
- Abstract
The definition of microplastics (MPs) is nowadays too generic from a biological perspective, since different characteristics of these particles might influence their effects. To provide experimental evidence that size is an important factor to be considered, Mediterranean mussels Mytilus galloprovincialis were exposed to five size classes of polyethylene fragments (PE-MPs, 20-50 μm, 50-100 μm, 100-250 μm, 250-500 μm, 500-1000 μm). After 10 days of exposure, MPs ingestion and mechanistic relationships between particles size and cellular effects were analysed through a wide panel of biological alterations, including immune system responses, cholinergic function, antioxidant system, lipid metabolism and peroxidation. Results were further elaborated through a Weight of Evidence approach, summarizing the overall biological significance of obtained results in a hazard index based on the number and magnitude of variations and their toxicological relevance. PE-MPs 500-1000 μm were identified as the less biologically reactive size class due to the limited ingestion of particles coupled with the lack of biological effects, followed by PE-MPs 250-500 μm, which slightly altered the cholinergic function and lysosomal membranes. Conversely, PE-MPs smaller than 250 μm provoked a more consistent onset of biological alterations in terms of immune system composition and functioning, redox homeostasis, and lipid metabolism. The overall findings of this study highlight the importance of considering the size of particles for monitoring and risk assessment of MPs, introducing a more integrated evaluation of plastic pollution that, beside particles concentration, should adequately weigh those characteristics triggering the onset of biological effects., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
13. Changes in kynurenine metabolites in the gray and white matter of the dorsolateral prefrontal cortex of individuals affected by schizophrenia.
- Author
-
Antenucci N, D'Errico G, Fazio F, Nicoletti F, Bruno V, and Battaglia G
- Abstract
Alterations in the kynurenine pathway of tryptophan metabolism have been implicated in the pathophysiology of schizophrenia. Here, we performed an in-depth analysis of all metabolites of the kynurenine pathway, i.e., tryptophan (TRY), kynurenic acid (KYNA), L-kynurenine (KYN), 3-hydroxykynurenine (3-HK), anthranylic acid (ANA), 3-hydroxyanthranylic acid (3-HANA), xanthurenic acid (XA) and quinolinic acid (QUINA), in postmortem samples of the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46, 9) of individuals affected by schizophrenia and non-schizophrenic controls. The analysis was carried out in the gray and white matter. Levels of KYN, 3-HK, ANA, and 3-HANA were significantly increased in both the gray and white matter of the DLPFC of individuals affected by schizophrenia, whereas levels of TRY, KYNA, and QUINA were increased exclusively in the white matter and remained unchanged in the gray matter. These increases in kynurenine metabolites did not correlate with age, sex, duration of the disease, and duration and type of antipsychotic medication. These findings suggest that the two major branches of the kynurenine pathway, i.e., the transamination of KYN into KYNA, and hydroxylation of KYN into 3-HK are activated in the white matter of individuals affected by schizophrenia, perhaps as a result of neuroinflammation, and support the evidence that abnormalities of the white matter are consistenly associated with schizophrenia., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.