1. SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx.
- Author
-
Martino C, Kellman BP, Sandoval DR, Clausen TM, Cooper R, Benjdia A, Soualmia F, Clark AE, Garretson AF, Marotz CA, Song SJ, Wandro S, Zaramela LS, Salido RA, Zhu Q, Armingol E, Vázquez-Baeza Y, McDonald D, Sorrentino JT, Taylor B, Belda-Ferre P, Das P, Ali F, Liang C, Zhang Y, Schifanella L, Covizzi A, Lai A, Riva A, Basting C, Broedlow CA, Havulinna AS, Jousilahti P, Estaki M, Kosciolek T, Kuplicki R, Victor TA, Paulus MP, Savage KE, Benbow JL, Spielfogel ES, Anderson CAM, Martinez ME, Lacey JV Jr, Huang S, Haiminen N, Parida L, Kim H-C, Gilbert JA, Sweeney DA, Allard SM, Swafford AD, Cheng S, Inoyue M, Niiranen T, Jain M, Salomaa V, Zengler K, Klatt NR, Hasty J, Berteau O, Carlin AF, Esko JD, Lewis NE, and Knight R
- Abstract
The gastrointestinal (GI) tract is a site of replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and GI symptoms are often reported by patients. SARS-CoV-2 cell entry depends upon heparan sulfate (HS) proteoglycans, which commensal bacteria that bathe the human mucosa are known to modify. To explore human gut HS-modifying bacterial abundances and how their presence may impact SARS-CoV-2 infection, we developed a task-based analysis of proteoglycan degradation on large-scale shotgun metagenomic data. We observed that gut bacteria with high predicted catabolic capacity for HS differ by age and sex, factors associated with coronavirus disease 2019 (COVID-19) severity, and directly by disease severity during/after infection, but do not vary between subjects with COVID-19 comorbidities or by diet. Gut commensal bacterial HS-modifying enzymes reduce spike protein binding and infection of authentic SARS-CoV-2, suggesting that bacterial grooming of the GI mucosa may impact viral susceptibility.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019, can infect the gastrointestinal (GI) tract, and individuals who exhibit GI symptoms often have more severe disease. The GI tract's glycocalyx, a component of the mucosa covering the large intestine, plays a key role in viral entry by binding SARS-CoV-2's spike protein via heparan sulfate (HS). Here, using metabolic task analysis of multiple large microbiome sequencing data sets of the human gut microbiome, we identify a key commensal human intestinal bacteria capable of grooming glycocalyx HS and modulating SARS-CoV-2 infectivity in vitro . Moreover, we engineered the common probiotic Escherichia coli Nissle 1917 (EcN) to effectively block SARS-CoV-2 binding and infection of human cell cultures. Understanding these microbial interactions could lead to better risk assessments and novel therapies targeting viral entry mechanisms.
- Published
- 2025
- Full Text
- View/download PDF