1. Challenges of Biological Complexity in the Study of Nanotoxicology
- Author
-
Northwick, Andrew B. and Carlson, Erin E.
- Abstract
The scale of nanoparticle use in consumer goods has grown exponentially over several decades owing to the unique properties of materials in this size range. At the same time, well-defined end of life cycle disposal strategies have not been developed for most materials, meaning that we are approaching the potential for a new ecological disaster with the release of millions of metric tons of nanoparticles into the waste stream. The field of nanotoxicology has grown to meet the challenge of investigating the potential hazards of these materials and has already identified toxicity mechanisms that affect multiple tropes of life. However, there are stipulations on how applicable many of these results are to real world applications. These limitations largely arise from the complex network of variables that must be considered during these investigations. Herein, we focus on the challenges posed by the transformations that nanoparticles undergo when they are introduced into a biological environment. For example, biomolecules, such as proteins, rapidly coat nanoparticles with a shell, called a corona, that can modulate the toxicity of the core materials and/or aid its internalization into cells. As such, unlike in the evaluation of small molecule toxicity, one cannot assume that they know the composition of the nanoparticle-biomolecule species at any given time. This additional layer of complication, as well as the noncovalent nature of the corona, have made it difficult to identify consistent toxicity trends. In this Perspective, we highlight current analysis strategies and the difficulties in studying nanotoxicity, recent advances to aid in these studies, and efforts to reduce nanotoxicity and outline remaining challenges.
- Published
- 2025
- Full Text
- View/download PDF