Depending on the questions to be answered, water flow in the xylem can be modelled following different approaches with varying spatial and temporal resolution. When focussing on the influence of hydraulic architecture upon flow dynamics, distribution of water potentials in a tree crown or questions of vulnerability of the hydraulic system, functional-structural plant models, which link representations of morphological structure with simulated processes and with a virtual environment, can be a promising tool. Such a model will then include a network of idealized xylem segments, each representing the conducting part of a stem or branch segment, and a numerical machinery suitable for solving a system of differential equations on it reflecting the hydrodynamic laws, which are the basis of the broadly accepted cohesion-tension theory of water flow in plants. We will discuss functional-structural plant models, the simplifications that are useful for hydraulic simulations within this framework, the deduction of the used differential equations from basic physical conservation laws, and their numerical solution, as well as additional necessary models of radiation, photosynthesis, and stomatal conductance. In some supplementary notes, we are shortly addressing some related questions, for example, about root systems or about the relation between macro-scale hydraulic parameters and fine-grained (anatomical) xylem structure., (© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)