1. Paneth cell TNF signaling induces gut bacterial translocation and sepsis.
- Author
-
Wallaeys C, Garcia-Gonzalez N, Timmermans S, Vandewalle J, Vanderhaeghen T, De Beul S, Dufoor H, Eggermont M, Moens E, Bosteels V, De Rycke R, Thery F, Impens F, Verbanck S, Lienenklaus S, Janssens S, Blumberg RS, Iwawaki T, and Libert C
- Subjects
- Animals, Mice, Unfolded Protein Response, Mice, Inbred C57BL, Mice, Knockout, Endoribonucleases metabolism, Endoribonucleases genetics, Protein Serine-Threonine Kinases metabolism, Antimicrobial Peptides metabolism, Paneth Cells metabolism, Sepsis microbiology, Bacterial Translocation, Signal Transduction, Tumor Necrosis Factor-alpha metabolism
- Abstract
The cytokine tumor necrosis factor (TNF) plays important roles in limiting infection but is also linked to sepsis. The mechanisms underlying these paradoxical roles are unclear. Here, we show that TNF limits the antimicrobial activity of Paneth cells (PCs), causing bacterial translocation from the gut to various organs. This TNF-induced lethality does not occur in mice with a PC-specific deletion in the TNF receptor, P55. In PCs, TNF stimulates the IFN pathway and ablates the steady-state unfolded protein response (UPR), effects not observed in mice lacking P55 or IFNAR1. TNF triggers the transcriptional downregulation of IRE1 key genes Ern1 and Ern2, which are key mediators of the UPR. This UPR deficiency causes a significant reduction in antimicrobial peptide production and PC antimicrobial activity, causing bacterial translocation to organs and subsequent polymicrobial sepsis, organ failure, and death. This study highlights the roles of PCs in bacterial control and therapeutic targets for sepsis., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF