Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. CommSensLab-UPC - Centre Específic de Recerca en Comunicació i Detecció UPC, Chaparro Danon, David, Jagdhuber, Thomas, Piles Guillem, María, Jonard, François, Flührer, Anke, Vall-Llossera Ferran, Mercedes Magdalena, Camps Carmona, Adriano José, López Martínez, Carlos, Fernández Morán, Roberto, Baur, Martin J., Feldman, Andrew F., Fink, Anita, Entekhabi, Dara, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. CommSensLab-UPC - Centre Específic de Recerca en Comunicació i Detecció UPC, Chaparro Danon, David, Jagdhuber, Thomas, Piles Guillem, María, Jonard, François, Flührer, Anke, Vall-Llossera Ferran, Mercedes Magdalena, Camps Carmona, Adriano José, López Martínez, Carlos, Fernández Morán, Roberto, Baur, Martin J., Feldman, Andrew F., Fink, Anita, and Entekhabi, Dara
Monitoring vegetation moisture conditions is paramount to better understand and assess drought impacts on vegetation, enhance crop yield predictions, and improve ecosystem models. Passive microwave remote sensing allows retrievals of the vegetation optical depth (VOD; [unitless]), which is directly proportional to the vegetation water content (VWC; in units of water mass per unit area [kg/m2]). However, VWC is largely dependent on the dry biomass and structure imprints on the VOD signal. Previously, statistical models have been used to isolate the water component from the biomass and structure components. Physically-based approaches have not yet been proposed for this goal. In this study, we present a multi-sensor semi-physical approach to retrieve the vegetation moisture from the VOD and express it as Live Fuel Moisture Content (LFMC [%]; the percentage of water mass per dry biomass unit). The study is performed in the western United States for the period April 2015 – December 2018. There, in situ LFMC samples are available for assessment. We rely on a VOD model based on vegetation height data from GEDI/Sentinel-2 and radar backscatter from Sentinel-1, which account for the biomass and structure components. Vegetation moisture is retrieved at L-, X- and Ku-bands by minimizing the difference between the modeled VOD and the VOD estimates from SMAP (L-band) and AMSR-2 (X- and Ku-band) satellites. Results show that the LFMC retrievals are independent of canopy height, land cover, and radar backscatter, demonstrating the capability of the proposed algorithm to separate water dynamics from the biomass/structure component in VOD. LFMC estimates at X- and Ku-bands reproduce well the expected spatio-temporal dynamics of in situ LFMC. Results show good agreement with in situ at a regional scale, with Pearson's correlations (r) between in situ LFMC samples and LFMC estimates of 0.64 (Ku-band), 0.60 (X-band) and 0.47 (L-band). Similar results are obtained independently for shr, The work of D. Chaparro was supported by the XXXIII Ramón Areces Postdoctoral Fellowship and by MIT and the “la Caixa” Foundation (ID 100010434) under Grant LCF/ PR/MIT19/51840001 (MIT-Spain Seed Fund; D. Entekhabi, D. Chaparro). M. Piles thanks the support of Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital through the project AI4CS CIPROM/2021/56. M. Vall-llossera acknowledges funding from the Grant PID2020-114623RB-C32, funded by MCIN/AEI/10.13039/ 501100011033, and from the ERDF under Grant RTI2018-096765-A- 100. Also, the authors are grateful to MIT for supporting this research with the MIT-Germany Seed Fund (D. Entekhabi, T. Jagdhuber) and with the MIT-Belgium Seed Fund (D. Entekhabi, F. Jonard). A.F. Feldman was supported by both the ECOSTRESS science team and by a NASA Terrestrial Ecology scoping study for a dryland field campaign., Peer Reviewed, Postprint (author's final draft)