1. Sulfur dioxide in the mid-infrared transmission spectrum of WASP-39b.
- Author
-
Powell D, Feinstein AD, Lee EKH, Zhang M, Tsai SM, Taylor J, Kirk J, Bell T, Barstow JK, Gao P, Bean JL, Blecic J, Chubb KL, Crossfield IJM, Jordan S, Kitzmann D, Moran SE, Morello G, Moses JI, Welbanks L, Yang J, Zhang X, Ahrer EM, Bello-Arufe A, Brande J, Casewell SL, Crouzet N, Cubillos PE, Demory BO, Dyrek A, Flagg L, Hu R, Inglis J, Jones KD, Kreidberg L, López-Morales M, Lagage PO, Meier Valdés EA, Miguel Y, Parmentier V, Piette AAA, Rackham BV, Radica M, Redfield S, Stevenson KB, Wakeford HR, Aggarwal K, Alam MK, Batalha NM, Batalha NE, Benneke B, Berta-Thompson ZK, Brady RP, Caceres C, Carter AL, Désert JM, Harrington J, Iro N, Line MR, Lothringer JD, MacDonald RJ, Mancini L, Molaverdikhani K, Mukherjee S, Nixon MC, Oza AV, Palle E, Rustamkulov Z, Sing DK, Steinrueck ME, Venot O, Wheatley PJ, and Yurchenko SN
- Abstract
The recent inference of sulfur dioxide (SO
2 ) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1-3 suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4 . This is because of the low (<1 ppb) abundance of SO2 under thermochemical equilibrium compared with that produced from the photochemistry of H2 O and H2 S (1-10 ppm)4-9 . However, the SO2 inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 μm and, therefore, the detection of other SO2 absorption bands at different wavelengths is needed to better constrain the SO2 abundance. Here we report the detection of SO2 spectral features at 7.7 and 8.5 μm in the 5-12-μm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10 . Our observations suggest an abundance of SO2 of 0.5-25 ppm (1σ range), consistent with previous findings4 . As well as SO2 , we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 μm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1-8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF