1. Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon.
- Author
-
Fan, Zhao and Tanaka, Hajime
- Subjects
PHASE transitions ,CRYSTALLIZATION ,MOLECULAR dynamics ,MICROSCOPY ,SILICON ,DISCONTINUOUS precipitation ,MACHINE learning - Abstract
Some low-coordination materials, including water, silica, and silicon, exhibit polyamorphism, having multiple amorphous forms. However, the microscopic mechanism and kinetic pathway of amorphous-amorphous transition (AAT) remain largely unknown. Here, we use a state-of-the-art machine-learning potential and local structural analysis to investigate the microscopic kinetics of AAT in silicon after a rapid pressure change. We find that the transition from low-density-amorphous (LDA) to high-density-amorphous (HDA) occurs through nucleation and growth, resulting in non-spherical interfaces that underscore the mechanical nature of AAT. In contrast, the reverse transition occurs through spinodal decomposition. Further pressurisation transforms LDA into very-high-density amorphous (VHDA), with HDA serving as an intermediate state. Notably, the final amorphous states are inherently unstable, transitioning into crystals. Our findings demonstrate that AAT and crystallisation are driven by joint thermodynamic and mechanical instabilities, assisted by preordering, occurring without diffusion. This unique mechanical and diffusion-less nature distinguishes AAT from liquid-liquid transitions. The mechanism of amorphous-amorphous transitions is highly debated. Here, the authors use molecular dynamics simulations to reveal transitions via nucleation-growth or spinodal decomposition, resembling a thermodynamic phase transition but influenced by mechanics. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF