1. Safety in higher level automated vehicles: Investigating edge cases in crashes of vehicles equipped with automated driving systems.
- Author
-
Moradloo N, Mahdinia I, and Khattak AJ
- Subjects
- Humans, United States, Unsupervised Machine Learning, Wounds and Injuries epidemiology, Cluster Analysis, Accidents, Traffic statistics & numerical data, Accidents, Traffic prevention & control, Automobile Driving statistics & numerical data, Automation, Safety, Automobiles statistics & numerical data
- Abstract
With emerging Automated Driving Systems (ADS) representing Automated Vehicles (AVs) of Level 3 or higher as classified by the Society of Automotive Engineers, several AV manufacturers are testing their vehicles on public roadways in the U.S. The safety performance of AVs has become a major concern for the transportation industry. Several ADS-equipped vehicle crashes have been reported to the National Highway Traffic Safety Administration (NHTSA) in recent years. Scrutinizing these crashes can reveal rare or complex scenarios beyond the normal capabilities of AV technologies called "edge cases." Investigating edge-case crashes helps AV companies prepare vehicles to handle these unusual scenarios and, as such, improves traffic safety. Through analyzing the NHTSA data from July 2021 to February 2023, this study utilizes an unsupervised machine learning technique, hierarchical clustering, to identify edge cases in ADS-equipped vehicle crashes. Fifteen out of 189 observations are identified as edge cases, representing 8 % of the population. Injuries occurred in 10 % of all crashes (19 out of 189), but the proportion rose to 27 % for edge cases (4 out of 15 edge cases). Based on the results, edge cases could be initiated by AVs, humans, infrastructure/environment, or their combination. Humans can be identified as one of the contributors to the onset of edge-case crashes in 60 % of the edge cases (9 out of 15 edge cases). The main scenarios for edge cases include unlawful behaviors of crash partners, absence of a safety driver within the AV, precrash disengagement, and complex events challenging for ADS, e.g., unexpected obstacles, unclear road markings, and sudden and unexpected changes in traffic flow, such as abrupt road congestion or sudden stopped traffic from a crash. Identifying and investigating edge cases is crucial for improving transportation safety and building public trust in AVs., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF