1. CHK1 attenuates cardiac dysfunction via suppressing SIRT1-ubiquitination.
- Author
-
Yang TT, Zhou LH, Gu LF, Qian LL, Bao YL, Jing P, Sun JT, Du C, Shan TK, Wang SB, Wang WJ, Chen JY, Wang ZM, Wang H, Wang QM, Wang RX, and Wang LS
- Subjects
- Animals, Mice, Male, Apoptosis, Mice, Inbred C57BL, Oxidative Stress, Checkpoint Kinase 1 metabolism, Sirtuin 1 metabolism, Sirtuin 1 genetics, Myocytes, Cardiac metabolism, Myocardial Reperfusion Injury metabolism, Ubiquitination, Mice, Knockout
- Abstract
Background: Mitochondrial dysfunction is linked to myocardial ischemia-reperfusion (I/R) injury. Checkpoint kinase 1 (CHK1) could facilitate cardiomyocyte proliferation, however, its role on mitochondrial function in I/R injury remains unknown., Methods: To investigate the role of CHK1 on mitochondrial function following I/R injury, cardiomyocyte-specific knockout/overexpression mouse models were generated. Adult mouse cardiomyocytes (AMCMs) were isolated for in vitro study. Mass spectrometry-proteomics analysis and protein co-immunoprecipitation assays were conducted to dissect the molecular mechanism., Results: CHK1 was downregulated in myocardium post I/R and AMCMs post oxygen-glucose deprivation/re‑oxygenation (OGD/R). In vivo, CHK1 overexpression protected against I/R induced cardiac dysfunction, while heterogenous CHK1 knockout exacerbated cardiomyopathy. In vitro, CHK1 inhibited OGD/R-induced cardiomyocyte apoptosis and bolstered cardiomyocyte survival. Mechanistically, CHK1 attenuated oxidative stress and preserved mitochondrial metabolism in cardiomyocytes under I/R. Moreover, disrupted mitochondrial homeostasis in I/R myocardium was restored by CHK1 through the promotion of mitochondrial biogenesis and mitophagy. Through mass spectrometry analysis following co-immunoprecipitation, SIRT1 was identified as a direct target of CHK1. The 266-390 domain of CHK1 interacted with the 160-583 domain of SIRT1. Importantly, CHK1 phosphorylated SIRT1 at Thr530 residue, thereby inhibiting SMURF2-mediated degradation of SIRT1. The role of CHK1 in maintaining mitochondrial dynamics control and myocardial protection is abolished by SIRT1 inhibition, while inactivated mutation of SIRT1 Thr530 fails to reverse the impaired mitochondrial dynamics following CHK1 knockdown. CHK1 Δ390 amino acids (aa) mutant functioned similarly to full-length CHK1 in scavenging ROS and maintaining mitochondrial dynamics. Consistently, cardiac-specific SIRT1 knockdown attenuated the protective role of CHK1 in I/R injury., Conclusions: Our findings revealed that CHK1 mitigates I/R injury and restores mitochondrial dynamics in cardiomyocytes through a SIRT1-dependent mechanism., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF