1. Model Swarms: Collaborative Search to Adapt LLM Experts via Swarm Intelligence
- Author
-
Feng, Shangbin, Wang, Zifeng, Wang, Yike, Ebrahimi, Sayna, Palangi, Hamid, Miculicich, Lesly, Kulshrestha, Achin, Rauschmayr, Nathalie, Choi, Yejin, Tsvetkov, Yulia, Lee, Chen-Yu, and Pfister, Tomas
- Subjects
Computer Science - Computation and Language - Abstract
We propose Model Swarms, a collaborative search algorithm to adapt LLMs via swarm intelligence, the collective behavior guiding individual systems. Specifically, Model Swarms starts with a pool of LLM experts and a utility function. Guided by the best-found checkpoints across models, diverse LLM experts collaboratively move in the weight space and optimize a utility function representing model adaptation objectives. Compared to existing model composition approaches, Model Swarms offers tuning-free model adaptation, works in low-data regimes with as few as 200 examples, and does not require assumptions about specific experts in the swarm or how they should be composed. Extensive experiments demonstrate that Model Swarms could flexibly adapt LLM experts to a single task, multi-task domains, reward models, as well as diverse human interests, improving over 12 model composition baselines by up to 21.0% across tasks and contexts. Further analysis reveals that LLM experts discover previously unseen capabilities in initial checkpoints and that Model Swarms enable the weak-to-strong transition of experts through the collaborative search process.
- Published
- 2024