Siipola, Sari M., Kotilainen, Titta, Sipari, Nina, Morales, Luis Orlando, Lindfors, Anders V., Robson, Matthew, Aphalo, Pedro J., Siipola, Sari M., Kotilainen, Titta, Sipari, Nina, Morales, Luis Orlando, Lindfors, Anders V., Robson, Matthew, and Aphalo, Pedro J.
Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV‐A and UV‐B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV‐B; (2) attenuate UV‐B and UV‐A < 370 nm; (3) attenuate UV‐B and UV‐A; (4) attenuate UV‐B, UV‐A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole‐leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV‐B responses were not significant. These results show that pea plants regulate epidermal UV‐A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV‐B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors., Funding agencies:Suomen Biologian Seura VanamoSocietas pro Fauna et Flora Fennica