406 results on '"Show PL"'
Search Results
2. Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals
- Author
-
Islam Rony, Z, Mofijur, M, Hasan, MM, Rasul, MG, Jahirul, MI, Forruque Ahmed, S, Kalam, MA, Anjum Badruddin, I, Yunus Khan, TM, Show, PL, Islam Rony, Z, Mofijur, M, Hasan, MM, Rasul, MG, Jahirul, MI, Forruque Ahmed, S, Kalam, MA, Anjum Badruddin, I, Yunus Khan, TM, and Show, PL
- Abstract
The International Maritime Organization (IMO) has placed stricter controls on several aspects of global maritime transport operations to protect the environment. In light of this, the goal of this study is to examine and assess the different prospective paths and technologies that will assist the shipping industry in decarbonizing its operations. We consider how the utilisation of various alternative energy sources reduces greenhouse gas (GHG) emissions from marine transportation and contributes to the promotion of the United Nations Sustainable Development Goals (SGDs). The complexities associated with maritime industry operations using alternative energy sources are also explored. Biofuel as an alternative energy source, including biomethanol and biodiesel, can reduce greenhouse gas emissions in the shipping industry by 25% to 100%. However, the current supply of biofuels can only meet about 15% of the total demand which is not sufficient to sustainably power the entire marine fleet. There are several issues associated with these biofuels, including oxidation, ecological consequences, feedstock availability, technical and operational constraints, and economic factors that must be addressed before their full potential may be achieved.
- Published
- 2023
3. Progress and Recent Trends in the Application of Nanoparticles as Low Carbon Fuel Additives-A State of the Art Review
- Author
-
Ampah, JD, Yusuf, AA, Agyekum, EB, Afrane, S, Jin, C, Liu, H, Fattah, IMR, Show, PL, Shouran, M, Habil, M, and Kamel, S
- Subjects
0912 Materials Engineering, 1007 Nanotechnology - Abstract
The first part of the current review highlights the evolutionary nuances and research hotspots in the field of nanoparticles in low carbon fuels. Our findings reveal that contribution to the field is largely driven by researchers from Asia, mainly India. Of the three biofuels under review, biodiesel seems to be well studied and developed, whereas studies regarding vegetable oils and alcohols remain relatively scarce. The second part also reviews the application of nanoparticles in biodiesel/vegetable oil/alcohol-based fuels holistically, emphasizing fuel properties and engine characteristics. The current review reveals that the overall characteristics of the low carbon fuel-diesel blends improve under the influence of nanoparticles during combustion in diesel engines. The most important aspect of nanoparticles is that they act as an oxygen buffer that provides additional oxygen molecules in the combustion chamber, promoting complete combustion and lowering unburnt emissions. Moreover, the nanoparticles used for these purposes exhibit excellent catalytic behaviour as a result of their high surface area-to-volume ratio-this leads to a reduction in exhaust pollutants and ensures an efficient and complete combustion. Beyond energy-based indicators, the exergy, economic, environmental, and sustainability aspects of the blends in diesel engines are discussed. It is observed that the performance of the diesel engine fuelled with low carbon fuels according to the second law of efficiency improves under the influence of the nano-additives. Our final part shows that despite the benefits of nanoparticles, humans and animals are under serious threats from the highly toxic nature of nanoparticles.
- Published
- 2022
4. Application of microwave plasma technology to convert carbon dioxide (CO2) into high value products: A review
- Author
-
Ong, MY, Nomanbhay, S, Kusumo, F, Show, PL, Ong, MY, Nomanbhay, S, Kusumo, F, and Show, PL
- Abstract
The most important challenge faced by mankind in the 21st century is the global warming issues associated with the global energy demand. A sustainable and low carbon-based energy economy must be developed to reduce the dependency on non-renewable fossil fuels. Other than exploring renewable energy technology, such as solar, hydro, and wind, recycling and utilization of carbon dioxide (CO2) in synthesizing of high value-added products is also an alternative solution to mitigate climate change. As a potential technology, the plasma-based decomposition of CO2 has received a lot of interest, especially microwave discharge due to its outstanding ability to produce non-equilibrium plasma with high ionization power, to convert CO2 in an energy-efficient manner, and others. Hence, this paper is written to provide an overview of the microwave plasma technology on CO2 conversion. The basic theory of plasma technology has also been discussed to brief the readers, particularly the non-specialist, on the technical background. The parameters that affect the performance of the CO2 conversion process under microwave discharge such as pressure, microwave power supply, gas flow rate/pattern, co-reactant, and catalyst, are also highlighted. To sum up, the prospects and challenges for the commercialization of CO2 utilization, such as methane(CH4) with CO2 reforming in syngas production, using microwave plasma technology have also been emphasized.
- Published
- 2022
5. Conversion of the toxic and hazardous Zanthoxylum armatum seed oil into methyl ester using green and recyclable silver oxide nanoparticles
- Author
-
Rozina, Ahmad, M, Asif, S, Klemeš, JJ, Mubashir, M, Bokhari, A, Sultana, S, Mukhtar, A, Zafar, M, Bazmi, AA, Ullah, S, Khan, MS, Koyande, AK, Mofijur, M, Show, PL, Rozina, Ahmad, M, Asif, S, Klemeš, JJ, Mubashir, M, Bokhari, A, Sultana, S, Mukhtar, A, Zafar, M, Bazmi, AA, Ullah, S, Khan, MS, Koyande, AK, Mofijur, M, and Show, PL
- Abstract
The cleaner and sustainable production of biodiesel from toxic and hazardous non-edible seed oils offer a remarkable opportunity to deal with energy crises and provide a renewable substitute to depleting fossil fuels. In the current study, the potential of the novel, toxic and non-edible seed oil of Zanthoxylum armatum was investigated for eco-friendly production of biodiesel catalysed by green nanoparticles of silver oxide. Silver oxide nanoparticles were synthesised with aqueous leaf extract of Silybum marianum. Heterogeneous green nanocatalysts were preferred due to their recyclable nature and easy recovery. The maximum yield of 95% of methyl ester was obtained at optimum reaction conditions of oil to methanol molar ratio 1:7, catalyst loading 0.5 (wt.%), reaction temperature 90 °C and reaction time 2 h. Characterisation of synthesised nanoparticles of silver oxide was carried out with X-Ray diffraction (XRD), scanning electron microscopy (SEM), and energy diffraction X-ray (EDX). Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) confirmed the formation of methyl esters. 5, 8-octadecenoic acid was found to be the major fatty acid methyl ester in the biodiesel sample. Fuel properties of biodiesel were investigated and found comparable to international standards of ASTM D-6571 and EN-14214. It was concluded from the current investigation that Zanthoxylum armatum is a potential biomass feedstock for the sustainable production of biodiesel using green nanoparticles of silver oxide.
- Published
- 2022
6. Recent advancement in deoxygenation of fatty acids via homogeneous catalysis for biofuel production
- Author
-
Tabandeh, M, Cheng, CK, Centi, G, Show, PL, Chen, WH, Ling, TC, Ong, HC, Ng, EP, Juan, JC, Lam, SS, Tabandeh, M, Cheng, CK, Centi, G, Show, PL, Chen, WH, Ling, TC, Ong, HC, Ng, EP, Juan, JC, and Lam, SS
- Abstract
© 2020 Elsevier B.V. Fuel-like hydrocarbons (also known as biofuel) isolated from the deoxygenation of fatty acids present different advantages as compared with fossil fuels. In particular, the homogeneous and heterogeneous catalytic deoxygenation methods have been the center of attention during recent years. Although catalytic deoxygenation of fatty acids via heterogeneous catalysis has been widely investigated, there is a high demand to review the progress in using the homogeneous catalysis pathways. Among the various homogeneous pathways, radical-based reactions and transition metal catalysis demonstrate the most promising results in the decarboxylation and decarbonylation processes. It is shown that radical-based reactions are more active in decarboxylation meanwhile the transition metal catalysts are rather selective to decarbonylation of fatty acids. Besides, the reaction conditions and type of catalysts are capable of enhancing biofuel production. Homogenous catalysis provides the huge potential for commercializing viability of biofuel via deoxygenation of fatty acids.
- Published
- 2022
7. Algae-mediated antibiotic wastewater treatment: A critical review.
- Author
-
Li, S, Show, PL, Ngo, HH, Ho, S-H, Li, S, Show, PL, Ngo, HH, and Ho, S-H
- Abstract
The existence of continually increasing concentrations of antibiotics in the environment is a serious potential hazard due to their toxicity and persistence. Unfortunately, conventional treatment techniques, such as those utilized in wastewater treatment plants, are not efficient for the treatment of wastewater containing antibiotic. Recently, algae-based technologies have been found to be a sustainable and promising technique for antibiotic removal. Therefore, this review aims to provide a critical summary of algae-based technologies and their important role in antibiotic wastewater treatment. Algal removal mechanisms including bioadsorption, bioaccumulation, and biodegradation are discussed in detail, with using algae-bacteria consortia for antibiotic treatment, integration of algae with other microorganisms (fungi and multiple algal species), hybrid algae-based treatment and constructed wetlands, and the factors affecting algal antibiotic degradation comprehensively described and assessed. In addition, the use of algae as a precursor for the production of biochar is highlighted, along with the modification of biochar with other materials to improve its antibiotic removal capacity and hybrid algae-based treatment with advanced oxidation processes. Furthermore, recent novel approaches for enhancing antibiotic removal, such as the use of genetic engineering to enhance the antibiotic degradation capacity of algae and the integration of algal antibiotic removal with bioelectrochemical systems are discussed. Finally, some based on the critical review, key future research perspectives are proposed. Overall, this review systematically presents the current progress in algae-mediated antibiotic removal technologies, providing some novel insights for improved alleviation of antibiotic pollution in aquatic environments.
- Published
- 2022
8. Green energy technology
- Author
-
Chen, WH, Ong, HC, Ho, SH, and Show, PL
- Subjects
02 Physical Sciences, 09 Engineering - Abstract
Our environment is facing several serious challenges from energy utilization, such as fossil fuel exhaustion, air pollution, deteriorated atmospheric greenhouse effect, global warming, climate change, etc [...]
- Published
- 2021
9. Greenhouse gases utilization: A review
- Author
-
Jeffry, L, Ong, MY, Nomanbhay, S, Mofijur, M, Mubashir, M, and Show, PL
- Subjects
Energy ,0306 Physical Chemistry (incl. Structural), 0904 Chemical Engineering, 0913 Mechanical Engineering - Abstract
The excessive global emission of greenhouse gases (mainly carbon dioxide, CO2 and methane, CH4), especially due to the burning of fossil fuel for energy and power generation, is the main cause to the air pollution and greenhouse effect. This has eventually brought many issues, such as climate change and global warming, that will affect the standard life of human beings. Many strategies have been proposed to further reduce the excessive emission of greenhouse gases, including CO2 and CH4 utilization. This method not only reduce the CO2 concentration in the atmosphere, but also producing renewable energy (syngas) at the same time. Hence, CO2 and CH4 utilization is also a promising approach to assist in overcoming the energy crisis due to the increasing population in time. Basically, the utilization of CO2 and CH4 system can be categorized into four: (i) electrochemical reduction, (ii) advanced catalyst system, (iii) photocatalytic reduction, and (iv) plasma technology. In this review paper, the mechanism implemented on the four abovementioned categories and their respective limitations are presented. Besides, future recommendations to optimize the greenhouse gases utilization system for up-scaling purpose is also highlighted.
- Published
- 2021
10. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater
- Author
-
Ahmed, SF, Mofijur, M, Nuzhat, S, Chowdhury, AT, Rafa, N, Uddin, MA, Inayat, A, Mahlia, TMI, Ong, HC, Chia, WY, and Show, PL
- Subjects
03 Chemical Sciences, 05 Environmental Sciences, 09 Engineering ,Strategic, Defence & Security Studies - Abstract
Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
- Published
- 2021
11. Prospects of Bioenergy Production From Organic Waste Using Anaerobic Digestion Technology: A Mini Review
- Author
-
Uddin, MN, Siddiki, SYA, Mofijur, M, Djavanroodi, F, Hazrat, MA, Show, PL, Ahmed, SF, and Chu, Y-M
- Abstract
naerobic digestion (AD) from organic waste has gained worldwide attention because it offers significant environmental and economic benefits. It can reduce the local waste through recycling which will conserve resources, reduce greenhouse gas emissions, and build economic resilience in the face of an uncertain future for energy production and waste disposal. The productive use of local waste through recycling conserves resources by reducing landfill space, the whole of life impacts of landfilling, and post-closure maintenance of landfills. Turning waste into a renewable energy source will assist the decarbonisation of the economy by reducing harmful emissions and pollutants. Therefore, this mini-review aims to summarise key factors and present valuable evidence for an efficient AD process. It also presents the pros and cons of different AD process to convert organic waste along with the reactor technologies. Besides, this paper highlights the challenges and the future perspective of the AD process. However, it is highlighted that for an effective and efficient AD process, appropriate temperature, pH, a strong inoculum to substrate ratio, good mixing and small particle sizes are important factors. The selection of suitable AD process and reactor is important because not all types of processes and reactors are not effective for processing organic waste. This study is of great importance for ongoing work on renewable energy generation from waste and provides important knowledge of innovative waste processing. Finally, it is recommended that the government should increase their support towards the AD technology and consider the unutilized significant potential of gaseous biofuel production.
- Published
- 2021
12. Techniques to improve the stability of biodiesel: a review
- Author
-
Hazrat, MA, Rasul, MG, Khan, MMK, Mofijur, M, Ahmed, SF, Ong, HC, Vo, D-VN, and Show, PL
- Subjects
03 Chemical Sciences, 05 Environmental Sciences, 06 Biological Sciences ,Environmental Sciences - Published
- 2021
13. Source, distribution and emerging threat of micro- and nanoplastics to marine organism and human health: Socio-economic impact and management strategies
- Author
-
Mofijur, M, Ahmed, SF, Rahman, SMA, Arafat Siddiki, SY, Islam, ABMS, Shahabuddin, M, Ong, HC, Mahlia, TMI, Djavanroodi, F, and Show, PL
- Subjects
03 Chemical Sciences, 05 Environmental Sciences, 06 Biological Sciences ,Aquatic Organisms ,Socioeconomic Factors ,Microplastics ,Animals ,Humans ,Toxicology ,Plastics ,Water Pollutants, Chemical - Abstract
The nature of micro- and nanoplastics and their harmful consequences has drawn significant attention in recent years in the context of environmental protection. Therefore, this paper aims to provide an overview of the existing literature related to this evolving subject, focusing on the documented human health and marine environment impacts of micro- and nanoplastics and including a discussion of the economic challenges and strategies to mitigate this waste problem. The study highlights the micro- and nanoplastics distribution across various trophic levels of the food web, and in different organs in infected animals which is possible due to their reduced size and their lightweight, multi-coloured and abundant features. Consequently, micro- and nanoplastics pose significant risks to marine organisms and human health in the form of cytotoxicity, acute reactions, and undesirable immune responses. They affect several sectors including aquaculture, agriculture, fisheries, transportation, industrial sectors, power generation, tourism, and local authorities causing considerable economic losses. This can be minimised by identifying key sources of environmental plastic contamination and educating the public, thus reducing the transfer of micro- and nanoplastics into the environment. Furthermore, the exploitation of the potential of microorganisms, particularly those from marine origins that can degrade plastics, could offer an enhanced and environmentally sound approach to mitigate micro- and nanoplastics pollution.
- Published
- 2021
14. Progress in biomass torrefaction: Principles, applications and challenges
- Author
-
Chen, W-H, Lin, B-J, Lin, Y-Y, Chu, Y-S, Ubando, AT, Show, PL, Ong, HC, Chang, J-S, Ho, S-H, Culaba, AB, Pétrissans, A, and Pétrissans, M
- Subjects
Energy ,0904 Chemical Engineering, 0913 Mechanical Engineering, 0915 Interdisciplinary Engineering - Abstract
The development of biofuels has been considered as an important countermeasure to abate anthropogenic CO2 emissions, suppress deteriorated atmospheric greenhouse effect, and mitigate global warming. To produce biofuels from biomass, thermochemical conversion processes are considered as the most efficient routes wherein torrefaction has the lowest global warming potential. Combustion is the easiest way to consume biomass, which can be burned alone or co-fired with coal to generate heat and power. However, solid biomass fuels are not commonly applied in the industry due to their characteristics of hygroscopic nature and high moisture content, low bulk density and calorific value, poor grindability, low compositional homogeneity, and lower resistance against biological degradation. In recently developing biomass conversion technologies, torrefaction has attracted much attention since it can effectively upgrade solid biomass and produce coal-like fuel. Torrefaction is categorized into dry and wet torrefaction; the former can further be split into non-oxidative and oxidative torrefaction. Despite numerous methods developed, non-oxidative torrefaction, normally termed torrefaction, has a higher potential for practical applications and commercialization when compared to other methods. To provide a comprehensive review of the progress in biomass torrefaction technologies, this study aims to perform an in-depth literature survey of torrefaction principles, processes, systems, and to identify a current trend in practical torrefaction development and environmental performance. Moreover, the encountered challenges and perspectives from torrefaction development are underlined. This state-of-the-art review is conducive to the production and applications of biochar for resource utilization and environmental sustainability. To date, several kinds of reactors have been developed, while there is still no obviously preferred one as they simultaneously have pros and cons. Integrating torrefaction with other processes such as co-firing, gasification, pyrolysis, and ironmaking, etc., makes it more efficient and economically feasible in contrast to using a single process. By virtue of capturing carbon dioxide during the growth stage of biomass, negative carbon emissions can even be achieved from torrefied biomass.
- Published
- 2021
15. A system dynamics approach to pollution remediation and mitigation based on increasing the share of renewable resources.
- Author
-
Shadman, S, Chin, CMM, Sakundarini, N, Yap, EH, Fairuz, S, Wong, XY, Khalid, PA, Karimi, F, Karaman, C, Mofijur, M, Koyande, AK, Show, PL, Shadman, S, Chin, CMM, Sakundarini, N, Yap, EH, Fairuz, S, Wong, XY, Khalid, PA, Karimi, F, Karaman, C, Mofijur, M, Koyande, AK, and Show, PL
- Abstract
This study explores the role of renewable energy (RE) penetration in Malaysia's energy security (ES) and its implications for the country's target of 20% capacity in the energy mix by 2025. Renewable energy (RE) is a critical driver of long-term energy security. In 2018, the share of renewable energy in Malaysia's energy mix was 9%, falling far short of the national target of 20% penetration by 2025. This study employs a system dynamics approach to investigate the relationship between RE penetration and correlated indicators from energy security (ES) dimensions: energy availability, environmental sustainability, and socio-economics. The causal relationships between the three-dimensional indicators of ES have been established using causal and stock and flow logic. Simulated results show that energy consumption has increased sharply, while energy efficiency and economic growth have only increased by a small margin with an increase in RE from 2015 to 2020. The energy intensity is expected to rise slightly by the end of the fifth year. As a result, the overall impact is positive for Malaysia's environmental sustainability while reducing its reliance on energy imports and meeting national economic growth demands.
- Published
- 2021
16. Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling.
- Author
-
Yu, KL, Lee, XJ, Ong, HC, Chen, W-H, Chang, J-S, Lin, C-S, Show, PL, Ling, TC, Yu, KL, Lee, XJ, Ong, HC, Chen, W-H, Chang, J-S, Lin, C-S, Show, PL, and Ling, TC
- Abstract
This study aims to investigate the adsorption behavior of cationic and anionic dyes of methylene blue (MB) and Congo red (CR) onto wet-torrefied Chlorella sp. microalgal biochar respectively, as an approach to generate a waste-derived and low-cost adsorbent. The wet-torrefied microalgal biochar possessed microporous properties with pore diameter less than 2 nm. The optimum adsorbent dosage of wet-torrefied microalgal biochar for MB and CR dyes removal were determined at 1 g/L and 2 g/L, respectively, with their natural pHs as the optimum adsorption pHs. The determined equilibrium contact times for MB and CR were 120 h and 4 h, respectively. Based on the equilibrium modeling, the results revealed that Langmuir isotherm showed the best model fit, based on the highest R2 coefficient, for both the adsorption processes of MB and CR using the wet-torrefied microalgal biochar, indicating that the monolayer adsorption was the dominant process. From the modeling, the maximum adsorption capacities for MB and CR were 113.00 mg/g and 164.35 mg/g, respectively. The kinetic modeling indicated the adsorption rate and mechanism of the dyes adsorption processes, which could be crucial for future modeling and application of wet-torrefied microalgal biochar. From the results, it suggests that the valorization of microalgae by utilizing wet-torrefied microalgal biochar as the effective adsorbent for the removal of toxic dyes with an approach of microalgal biorefinery and value-added application to the environment is feasible.
- Published
- 2021
17. Design and process optimization of sustainable absorption of heat operated refrigeration system
- Author
-
Hamid, K, Sajjad, U, Mubashir, M, Shafiq, QN, Mukhtar, A, Sadiq, M, Djavanroodi, F, and Show, PL
- Subjects
0904 Chemical Engineering - Abstract
The primary aim of this research article is to design a vapor absorption refrigeration system and analyzing the system employing R 717 (NH3) with water, as its working fluid per unit capacity. Unlike vapor compression refrigeration cycle, the vapor absorption refrigeration cycle is powered by heat energy replacing the mechanical energy, to change the conditions of refrigerant required for the operation of the cycle. Thus, we introduced an absorber, a pump, a generator and a pressure-reducing valve in our designed system to replace with the conventional compressor. The main idea of the project has been derived from the photovoltaic solar geyser systems, which are installed in different power plants and the energy sector. The theoretical calculations are carried out for different components of the newly fabricated system like absorber, an evaporator, condenser and an air pump of vapor absorption system for a capacity of 0.25TR. The designed system has been fabricated to validate the reducing temperature for free of cost operations. Energy is considered the backbone of global technological and economic developments. Hot water has been used as a heat source and the system is designed and evaluated for various kinds of operating conditions. In this work, the performance of the system is described in terms of various operating conditions of condenser, absorber and an evaporator. Experimental results proved that the efficiency of absorption depends on the heat source, which is a function of the temperature formed inside the generator. Besides, the solar potential is at maximum in summer, therefore, the newly designed and fabricated refrigeration system is quite suitable for hotter areas.
- Published
- 2020
18. Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture
- Author
-
Ajeng, AA, Abdullah, R, Ling, TC, Ismail, S, Lau, BF, Ong, HC, Chew, KW, Show, PL, and Chang, JS
- Subjects
0502 Environmental Science and Management, 0907 Environmental Engineering, 1002 Environmental Biotechnology - Abstract
© 2020 Elsevier B.V. The dependence on chemical fertilizers and pesticides to increase agricultural outputs owing to the demands of a growing human population creates the need for a sustainable fertilizer. Biochar is presently a promising candidate as an inoculant carrier, given its highly porous structure, with nutrients naturally derived from the biomass, high water, and nutrient retention properties, which favor microbial growth. Biochar can be produced through pyrolysis, hydrothermal carbonization, gasification, and torrefaction. The porosity and adsorption ability of biochar allows it to be effectively used as a carrier to immobilize plant growth-promoting rhizobacteria (PGPR) for enhanced crop growth. Furthermore, the physicochemical properties of biochar like surface area, pore properties, and surface functional groups can be further modified via several activation methods, such as chemical oxidation and reduction, and physical activation to optimize the PGPR immobilization. The understanding of the agronomic impacts of biochar and the possible scaling up of cell immobilization will provide insights on the mechanism of biochar as an efficient inoculant carrier. This will contribute to fewer environmental hazards with the utilization of biochar for promoting plant growth. The complex interplay of physicochemical properties of biochar as a carrier to immobilize PGPR and the potential mechanisms of biochar-based inoculants are significant to achieve agricultural sustainability.
- Published
- 2020
19. Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction
- Author
-
Yu, KL, Chen, WH, Sheen, HK, Chang, JS, Lin, CS, Ong, HC, Show, PL, and Ling, TC
- Subjects
Energy ,0306 Physical Chemistry (incl. Structural), 0904 Chemical Engineering, 0913 Mechanical Engineering - Abstract
© 2020 Elsevier Ltd This study focused on the bioethanol production from the co-production of solid biochar and liquid hydrolysate under microwave-assisted heating wet torrefaction towards a sustainable green technology. The two indigenous microalgal biomass undergone dilute acid pretreatment using wet torrefaction to produce microalgal hydrolysates and biochar at operating conditions of 160–170 °C with holding times of 5–10 min. The hydrolysates were utilized for fermentation with the yeast Saccharomyces cerevisiae at 29 °C in a dark condition at a non-agitation state for 120 h. The concentrations of total reducing sugar, reducing sugar by-product, and bioethanol in the hydrolysates were determined. The carbohydrate-rich microalga C. vulgaris ESP-31 showed a good performance in bioethanol production. Microalgal hydrolysate obtained after the pretreatment consisted of a total reducing sugar with the highest concentration of 98.11 g/L. The formation of by-product 5-hydroxymethyl-2-furaldehyde (5-HMF), which might act as the fermentation inhibitor that led to the low ethanol yield, was also analyzed. The highest ethanol yield achieved was 7.61% with a maximum experimental conversion probability of 95.22%. This study has demonstrated the feasible bioethanol production from microalgal hydrolysate through microwave-assisted heating wet torrefaction using dilute acids and the optimization of bioethanol production can be carried out for better performance in the future study.
- Published
- 2020
20. Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling
- Author
-
Yu, KL, Lee, XJ, Ong, HC, Chen, W-H, Chang, J-S, Lin, C-S, Show, PL, and Ling, TC
- Subjects
Methylene Blue ,Kinetics ,Charcoal ,Microalgae ,Congo Red ,Adsorption ,Chlorella ,Hydrogen-Ion Concentration ,Coloring Agents ,Environmental Sciences ,Water Pollutants, Chemical - Abstract
This study aims to investigate the adsorption behavior of cationic and anionic dyes of methylene blue (MB) and Congo red (CR) onto wet-torrefied Chlorella sp. microalgal biochar respectively, as an approach to generate a waste-derived and low-cost adsorbent. The wet-torrefied microalgal biochar possessed microporous properties with pore diameter less than 2 nm. The optimum adsorbent dosage of wet-torrefied microalgal biochar for MB and CR dyes removal were determined at 1 g/L and 2 g/L, respectively, with their natural pHs as the optimum adsorption pHs. The determined equilibrium contact times for MB and CR were 120 h and 4 h, respectively. Based on the equilibrium modeling, the results revealed that Langmuir isotherm showed the best model fit, based on the highest R2 coefficient, for both the adsorption processes of MB and CR using the wet-torrefied microalgal biochar, indicating that the monolayer adsorption was the dominant process. From the modeling, the maximum adsorption capacities for MB and CR were 113.00 mg/g and 164.35 mg/g, respectively. The kinetic modeling indicated the adsorption rate and mechanism of the dyes adsorption processes, which could be crucial for future modeling and application of wet-torrefied microalgal biochar. From the results, it suggests that the valorization of microalgae by utilizing wet-torrefied microalgal biochar as the effective adsorbent for the removal of toxic dyes with an approach of microalgal biorefinery and value-added application to the environment is feasible.
- Published
- 2020
21. Kinetic and thermodynamic analysis of iron oxide reduction by graphite for CO2 mitigation in chemical-looping combustion
- Author
-
Ubando, AT, Chen, WH, Show, PL, and Ong, HC
- Subjects
Energy ,0904 Chemical Engineering, 0906 Electrical and Electronic Engineering, 0913 Mechanical Engineering - Abstract
© 2020 John Wiley & Sons Ltd Chemical-looping combustion (CLC) provides a platform to generate energy streams while mitigating CO2 using iron oxide as a carrier of oxygen. Through the reduction process, iron oxide experiences phase transformation to ultimately produce metallic iron. To understand iron oxide reduction characteristics and optimally design the fuel reactor, kinetic and thermodynamic analyses were proposed, utilizing graphite. This study aims to evaluate the reduction behavior under the non-isothermal process of various mixture ratios of hematite and graphite via thermogravimetric analysis with simultaneously evaluating evolved gases using a Fourier transform infrared spectrometer. The Coats-Redfern model was employed to approximate the kinetic and thermodynamic parameters which assessed the different reaction mechanisms together with the distributed activation energy model (DAEM). The results revealed that the hematite-to-graphite ratio of 4:1 had the highest reduction degree and had three distinct peaks representing three iron oxide reduction phases. The zero-order reaction mechanism agreed with the experimental results compared with other reaction models. The thermodynamic analysis showed an overall endothermic spontaneous reaction for the three phases which signified the direct reduction of the iron oxides. The DAEM result validated a stepwise reduction of iron oxides to metallic iron. The study aids the optimal design of the CLC fuel reactor for enhanced system performance.
- Published
- 2020
22. A state-of-the-art review on thermochemical conversion of biomass for biofuel production: A TG-FTIR approach
- Author
-
Ong, HC, Chen, WH, Singh, Y, Gan, YY, Chen, CY, and Show, PL
- Subjects
Energy ,0906 Electrical and Electronic Engineering, 0913 Mechanical Engineering - Abstract
© 2020 Elsevier Ltd Effective methods of biomass characterization are needed for energy production due to the increase in biomass to bioenergy conversion capacity and the availability of various biomass sources. The utilization of biomass has been enhanced through thermochemical conversion techniques such as torrefaction, pyrolysis, and gasification. The biomass analytical techniques have been developed to decrease the time and energy required for biomass conversion performance. Thermogravimetric analyzer (TG) and Fourier transform infrared spectroscopic (FTIR) analytical techniques facing several limitations when applied individually. Thus, TG coupled with FTIR (TG-FTIR) was used to analyze the main parameters of biomass and improved the energy crop growing developments. In addition, TG-FTIR can determine the suitable ratio for two different biomass or coal blending during the co-pyrolysis and co-gasification to achieve the optimum synergetic interaction. In this review, thermochemical conversion processes such as torrefaction, pyrolysis, and gasification are presented. The analysis of the thermochemical conversion of biomass with the use of TG and FTIR individually are then discussed. Lastly, this review aims to discuss the applications of TG-FTIR techniques that have been applied to the analysis of evolved gas from the thermochemical processing of biomass to biofuels.
- Published
- 2020
23. Efficient deoxygenation of triglycerides to hydrocarbon-biofuel over mesoporous Al2O3-TiO2 catalyst
- Author
-
Ooi, XY, Oi, LE, Choo, MY, Ong, HC, Lee, HV, Show, PL, Lin, YC, and Juan, JC
- Subjects
Energy - Abstract
© 2019 Elsevier B.V. The renewable hydrocarbon-like biofuel from biomass is crucial to substitute fossil fuel. A series of mesoporous Al2O3-TiO2 mixed oxide catalysts with different TiO2 content (0.1Ti-0.9Al, 0.2Ti-0.8Al and 0.3Ti-0.7Al) have been synthesized. The physicochemical properties of the catalysts were characterized by XRD, FESEM-EDX, BET, FTIR, NH3-TPD, FTIR-Py, and TGA. The deoxygenation (DO) of triglyceride (i.e. triolein) was carried out in the absence of hydrogen and solvent. The mesoporous Al2O3-TiO2 catalysts showed high catalytic activity performance as compared to that of Al2O3 and TiO2. It was found that 0.2Ti-0.8Al catalyst exhibited the highest conversion (76.86%), and selectivity (27.26%) toward n-C15 + n-C17 at 380 °C after 4 h. The excellence performance of mesoporous Al2O3-TiO2 was attributed to its acidity, mesoporosity and larger surface area. The results reveal that the mesoporous Al2O3-TiO2 catalyst is a promising catalyst for the synthesis of hydrocarbon-like biofuel.
- Published
- 2019
24. Extraction of natural astaxanthin from Haematococcus pluvialis using liquid biphasic flotation system
- Author
-
Khoo, KS, Chew, KW, Ooi, CW, Ong, HC, Ling, TC, and Show, PL
- Subjects
Chlorophyceae ,Microalgae ,Biomass ,Xanthophylls ,Biotechnology - Abstract
© 2019 Elsevier Ltd This work aimed to study the application of liquid biphasic flotation (LBF) for the efficient and rapid recovery of astaxanthin from H. pluvialis microalgae. The performance of LBF for the extraction of astaxanthin was studied comprehensively under different operating conditions, including types and concentrations of food-grade alcohol and salt, volume ratio, addition of neutral salt, flotation period, and mass of dried H. pluvialis biomass powder. The maximum recovery, extraction efficiency and partition coefficient of astaxanthin obtained from the optimum LBF system were 95.11 ± 1.35%, 99.84 ± 0.05% and 385.16 ± 3.87, respectively. A scaled-up LBF system was also performed, demonstrating the feasibility of extracting natural astaxanthin from microalgae at a larger scale. This exploration of LBF system opens a promising avenue to the extraction of astaxanthin at lower cost and shorter processing time.
- Published
- 2019
25. Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae
- Author
-
Phwan, CK, Chew, KW, Sebayang, AH, Ong, HC, Ling, TC, Malek, MA, Ho, YC, Show, PL, Phwan, CK, Chew, KW, Sebayang, AH, Ong, HC, Ling, TC, Malek, MA, Ho, YC, and Show, PL
- Abstract
© 2019 The Author(s). Background: Microalgae are one of the promising feedstock that consists of high carbohydrate content which can be converted into bioethanol. Pre-treatment is one of the critical steps required to release fermentable sugars to be used in the microbial fermentation process. In this study, the reducing sugar concentration of Chlorella species was investigated by pre-treating the biomass with dilute sulfuric acid and acetic acid at different concentrations 1%, 3%, 5%, 7%, and 9% (v/v). Results: 3,5-Dinitrosalicylic acid (DNS) method, FTIR, and GC-FID were employed to evaluate the reducing sugar concentration, functional groups of alcohol bonds and concentration of bioethanol, respectively. The two-way ANOVA results (p < 0.05) indicated that there was a significant difference in the concentration and type of acids towards bioethanol production. The highest bioethanol yield obtained was 0.28 g ethanol/g microalgae which was found in microalgae sample pre-treated with 5% (v/v) sulfuric acid while 0.23 g ethanol/g microalgal biomass was presented in microalgae sample pre-treated with 5% (v/v) acetic acid. Conclusion: The application of acid pre-treatment on microalgae for bioethanol production will contribute to higher effectiveness and lower energy consumption compared to other pre-treatment methods. The findings from this study are essential for the commercial production of bioethanol from microalgae.
- Published
- 2019
26. Peptidomics- inspired discovery and activity evaluation of antioxidant peptides in multiple strains mixed fermentation of Porphyra yezoensis.
- Author
-
Yang J, Zhao P, Wang Q, Xu F, Bai Y, Pan S, Wang W, Tang DYY, and Show PL
- Subjects
- Saccharomyces cerevisiae metabolism, Saccharomyces cerevisiae chemistry, Tandem Mass Spectrometry, Bacillus amyloliquefaciens metabolism, Bacillus amyloliquefaciens chemistry, Lactobacillus plantarum metabolism, Lactobacillus plantarum chemistry, Edible Seaweeds, Porphyra chemistry, Porphyra metabolism, Porphyra microbiology, Antioxidants chemistry, Antioxidants metabolism, Fermentation, Peptides chemistry, Peptides metabolism
- Abstract
This study investigated the production of antioxidant peptides from Porphyra yezoensis through fermentation with three strains of microorganisms: Lactiplantibacillus plantarum L13, Bacillus amyloliquefaciens MMB-02, and Saccharomyces cerevisiae A8. The crude peptides were extracted by aqueous acid precipitation and purified by Sephadex G-25 gel column to produce highly active antioxidant components with molecular weight of <4000 Da. The LC-MS/MS result revealed that the fermentation group contained more hydrophobic amino acids and oligopeptides, which were mainly originated from phycobiliproteins and algal blue proteins. Finally, the antioxidant activity of Porphyra yezoensis was determined with DPPH· and ABTS· scavenging rates of 54.87% and 57.39%, respectively. The ferric ion-reducing power (FRAP) and enzyme activities of SOD and CAT were significantly higher than those of the control group. This study provides a scientific foundation for the deep processing of striped seaweed and contributes to the theoretical understanding of synthetic antioxidant substitutes., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
27. Current advances and future prospects of in-situ desulfurization processes in oxy-fuel combustion reactors.
- Author
-
Go ES, Ling JLJ, Solanki BS, Ahn H, Show PL, and Lee SH
- Abstract
Oxy-fuel circulating fluidized bed combustion is known as one of the most potent fuel combustion technologies that capture ultra-low greenhouse gases and pollutant emissions. While many investigations have been conducted for carbon capturing, the associated in-situ desulfurization process using calcium-based sorbents should also be underlined. This paper critically reviews the effects of changes in the operating environment on in-situ desulfurization processes compared to conventional air combustion. A comprehensive understanding of the process, encompassing hydrodynamic, physical and chemical aspects can be a guideline for designing the oxy-fuel combustion process with effective sulfur removal, potentially eliminating the need of a flue gas desulfurization unit. Results from thermogravimetric analyzers and morphological changes of calcium-based materials were presented to offer an insight into the sulfation mechanisms involved in the oxy-fuel circulating fluidized beds. Recently findings suggested that in-situ direct desulfurization is influenced not only by the desulfurization kinetics but also by the fluidization characteristics of calcium-based materials. Therefore, a complex reaction analysis that incorporated oxy-combustion reactions, computational fluid dynamics modeling, in-situ desulfurization reaction models and particle behavior can provide a thorough understanding of desulfurization processes across the reactor. Meanwhile, machine learning as a robust tool to predict desulfurization efficiency and improve operational flexibility should be applied with consideration of environmental improvement and economic feasibility., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
28. Research advances on production and application of algal biochar in environmental remediation.
- Author
-
Wang C, Lin X, Zhang X, and Show PL
- Subjects
- Plastics, Charcoal chemistry, Soil chemistry, Plants, Soil Pollutants analysis, Environmental Restoration and Remediation, Environmental Pollutants, Metals, Heavy analysis
- Abstract
Algae, comprising microalgae and macroalgae, have emerged as a promising feedstock for the production of functional biochar. Recently, the application of algal biochar in environmental remediation gains increasing attention. This review summarizes research advancements in the synthesis and application of algal biochar, a versatile and sustainable material for environmental remediation ranging from wastewater treatment to soil improvement. Algal biochar can be prepared by pyrolysis, microwave-assisted pyrolysis, and hydrothermal carbonization. Physical and chemical modifications have proven to be effective for improving biochar properties. Algal biochar is promising for removing diverse pollutants including heavy metals, organic pollutants, and microplastics. The role in soil improvement signifies a sustainable approach to enhancing soil structure, nutrient retention, and microbial activity. Research gaps are identified based on current understanding, necessitating further exploration into variations in biochar characteristics, the performance improvement, large-scale applications, and the long-term evaluation for environmental application. This review provides a better understanding of algal biochar as a sustainable and effective tool in environmental remediation., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
29. Editorial: Advanced biotechnologies towards energy-efficient wastewater treatment plants.
- Author
-
Azari M, Show PL, Du R, and Huang X
- Abstract
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.
- Published
- 2024
- Full Text
- View/download PDF
30. Editorial: Proceedings of ABBS-international conference on biohydrogen and bioprocesses 2022 (ABBS 2022).
- Author
-
Xia A, Herrmann C, Reungsang A, Show PL, Trably E, and Wu J
- Abstract
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.
- Published
- 2024
- Full Text
- View/download PDF
31. Advancement of Carotenogenesis of Astaxanthin from Haematococcus pluvialis: Recent Insight and Way Forward.
- Author
-
Wilawan B, Chan SS, Ling TC, Show PL, Ng EP, Jonglertjunya W, Phadungbut P, and Khoo KS
- Subjects
- Xanthophylls metabolism, Chlorophyceae chemistry, Chlorophyceae metabolism, Microalgae metabolism
- Abstract
The demand for astaxanthin has been increasing for many health applications ranging from pharmaceuticals, food, cosmetics, and aquaculture due to its bioactive properties. Haematococcus pluvialis is widely recognized as the microalgae species with the highest natural accumulation of astaxanthin, which has made it a valuable source for industrial production. Astaxanthin produced by other sources such as chemical synthesis or fermentation are often produced in the cis configuration, which has been shown to have lower bioactivity. Additionally, some sources of astaxanthin, such as shrimp, may denature or degrade when exposed to high temperatures, which can result in a loss of bioactivity. Producing natural astaxanthin through the cultivation of H. pluvialis is presently a demanding and time-consuming task, which incurs high expenses and restricts the cost-effective industrial production of this valuable substance. The production of astaxanthin occurs through two distinct pathways, namely the cytosolic mevalonate pathway and the chloroplast methylerythritol phosphate (MEP) pathway. The latest advancements in enhancing product quality and extracting techniques at a reasonable cost are emphasized in this review. The comparative of specific extraction processes of H. pluvialis biological astaxanthin production that may be applied to large-scale industries were assessed. The article covers a contemporary approach to optimizing microalgae culture for increased astaxanthin content, as well as obtaining preliminary data on the sustainability of astaxanthin production and astaxanthin marketing information., (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
32. Hydrogen production and pollution mitigation: Enhanced gasification of plastic waste and biomass with machine learning & storage for a sustainable future.
- Author
-
Bin Abu Sofian ADA, Lim HR, Chew KW, Khoo KS, Tan IS, Ma Z, and Show PL
- Subjects
- Biomass, Environmental Pollution, Hydrogen, Refuse Disposal methods, Greenhouse Gases
- Abstract
The pursuit of carbon neutrality confronts the twofold challenge of meeting energy demands and reducing pollution. This review article examines the potential of gasifying plastic waste and biomass as innovative, sustainable sources for hydrogen production, a critical element in achieving environmental reform. Addressing the problem of greenhouse gas emissions, the work highlights how the co-gasification of these feedstocks could contribute to environmental preservation by reducing waste and generating clean energy. Through an analysis of current technologies, the potential for machine learning to refine gasification for optimal hydrogen production is revealed. Additionally, hydrogen storage solutions are evaluated for their importance in creating a viable, sustainable energy infrastructure. The economic viability of these production methods is critically assessed, providing insights into both their cost-effectiveness and ecological benefits. Findings indicate that machine learning can significantly improve process efficiencies, thereby influencing the economic and environmental aspects of hydrogen production. Furthermore, the study presents the advancements in these technologies and their role in promoting a transition to a green economy and circular energy practices. Ultimately, the review delineates how integrating hydrogen production from unconventional feedstocks, bolstered by machine learning and advanced storage, can contribute to a sustainable and pollution-free future., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023. Published by Elsevier Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
33. Mycoremediation of Industrial Textile Wastewater Using Ganoderma lucidum Pellets and Activated Dolomite in Batch Bioreactor.
- Author
-
Zahuri AA, Wan Mohtar WHM, Hanafiah ZM, Abdul Patah MF, Show PL, Gafforov Y, and Wan-Mohtar WAAQI
- Abstract
In the world of fast fashion, textile industries are blooming rapidly to meet the consumer's demands. However, vast amounts of wastewater have been constantly produced, and it is becoming a serious environmental problem in the waterways. Although the technology for treating textile wastewater has been well reported and established, more sustainable efforts have taken the attention nowadays. Through the use of living Malaysian Ganoderma lucidum mycelial pellets (GL) and activated dolomite (AD) in the treatment system, the study explores the synergy between biosorption and physisorption as alternative treatment for textile wastewater. In the current work, mixture of GL premixed with AD (50:50; v/v) is used to treat industrial textile wastewater. The morphology, adsorption characteristics, and antibacterial activity of the adsorbents were studied. The mixture of adsorbents is capable of removing colours by 77.8% and reducing chemical oxygen demand (COD) by 75% within 48 h contact. Furthermore, the kinetic and adsorption had been studied and follow the pseudo-first-order kinetic model while both adsorption of Langmuir and Freundlich model was deduced from the treatment. In addition, antimicrobial activities from the treatment potentially reduced 10 × 10
1 CFU/mL after 48 h. The synergistic treatment by Ganoderma lucidum mycelial pellets and activated dolomite has immense potential in future wastewater treatment technology to obtain cleaner water., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)- Published
- 2024
- Full Text
- View/download PDF
34. Residual toxins on aquatic animals in the Pacific areas: Current findings and potential health effects.
- Author
-
Thi YVN, Vu TD, Do VQ, Ngo AD, Show PL, and Chu DT
- Subjects
- Animals, Humans, Artificial Intelligence, Oceans and Seas, Pacific Ocean, Ecosystem, Aquatic Organisms
- Abstract
The Pacific Ocean is among the five largest and deepest oceans in the world. The area of the Pacific Ocean covers about 28 % of the Earth's surface. This is the habitat of many marine species, and its diversity is recognized as a fundamental element of Pacific culture and heritage. The ecosystems of aquatic animals are highly affected by climate change and by other factors. Residual toxins on aquatic animals can be categorized into two types based on origin: toxins of marine origin and toxins associated with human activity. Residual toxins have emerged as a global concern in recent years due to their frequent presence in aquatic environments. Furthermore, residual toxins in organisms living in the marine environment in the Pacific Ocean region also seriously affect food safety, food security, and especially human health. In this review we discuss important issues about residual toxins on aquatic animals in the Pacific areas specifically about the types of toxins that exist in marine animals, their contamination pathways in the Asia, Pacific region and the potential health effects for humans, the application of information technology and artificial intelligence in residual toxins on aquatic animal., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
35. Production of extracellular agarase from Priestia megaterium AT7 and evaluation on marine algae hydrolysis.
- Author
-
Thanh Ha DT, Kim Thoa LT, Phuong Thao TT, Dung TT, Minh Ha TT, Phuong Lan TT, Khoo KS, Show PL, and Huy ND
- Subjects
- Agar chemistry, Hydrolysis, Sepharose, Sugars, Glycoside Hydrolases genetics
- Abstract
Agar is a common component biosynthesized from various marine algae species that is widely applied in various fields including food and pharmaceutical industries. However, the structural composition of agar is highly resisted against chemical and biological hydrolysis. Therefore, tremendous research is exploring various pretreatment strategies to break down the intrinsic chemical structural of agar linkage (i.e. neutral agarose and highly sulfated agaropectin) prior for its industrial potential usage. In this research work, a novel agar degrading bacterium was screened and isolated from agriculture soils. Molecular identification using nucleotide sequence of 16 s rRNA region comparison has indicated that the isolate belonged to Priestia genus, and was identified as Priestia megaterium AT7. The maximum enzyme activity was 52.85 ± 1.76 U/mL after 96 h of culture with 5% inoculum size and agitation speed of 180 rpm. Results indicated that the optimal condition for the production of agarose was achieved at pH 7 at 50 °C. The effects of metal ions (e.g. Ca
2+ , Co2+ , Cu2+ , Mn2+ , Mg2+ , Zn2+ and Fe2+ ) and organic solvents (e.g. acetone, ethanol, methanol, hexane and isopropanol) on enzyme activity were also evaluated. Marine algae hydrolysis evaluation at concentration of 0.1% indicated the enzyme produced reducing sugar of 683.94 ± 26.93 µg/g after 24 h of treatment. It was also found that the highest antioxidant activities obtained after 20 h of treatment was able to achieve 81.76 ± 3.90% at marine algae concentration of 0.1%. The findings obtained from this research work shows the promising application of extracellular agarase to saccharify marine algae for the recovery of value-added bioproducts., (Copyright © 2023 Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
36. Isolation and Characterization of Antimicrobial Peptides Isolated from Brevibacillus halotolerans 7WMA2 for the Activity Against Multidrug-Resistant Pathogens.
- Author
-
Le Han H, Pham PTV, Kim SG, Chan SS, Khoo KS, Chew KW, Show PL, Tran TNT, Nguyen HTV, and Nguyen PTD
- Abstract
Multidrug resistance to pathogens has posed a severe threat to public health. The threat could be addressed by antimicrobial peptides (AMPs) with broad-spectrum suppression. In this study, Brevibacillus halotolerans 7WMA2, isolated from marine sediment, produced AMPs against Gram-positive and Gram-negative bacteria. The AMPs were precipitated by ammonium sulfate 30% (w/v) from culture broth and dialyzed by a 1 kDa membrane. Tryptone Soy Agar (TSA) was used for the cultivation and resulted in the largest bacteria-inhibiting zones under aerobic conditions at 25 °C, 48 h. An SDS-PAGE gel overlay test revealed that strain 7WMA2 could produce AMPs of 5-10 kDa and showed no degradation when held at 121 °C for 30 min at a wide pH 2-12 range. The AMPs did not cause toxicity to HeLa cells with concentrations up to 500 µg/mL while increasing the arbitrary unit up to eight times. The study showed that the AMPs produced were unique, with broad-spectrum antimicrobial ability., (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
37. Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views.
- Author
-
Chen Z, Chen L, Khoo KS, Gupta VK, Sharma M, Show PL, and Yap PS
- Subjects
- Biomass, Biofuels, Fossil Fuels, Lignin chemistry, Cellulose
- Abstract
Urbanization has driven the demand for fossil fuels, however, the overly exploited resource has caused severe damage on environmental pollution. Biorefining using abundant lignocellulosic biomass is an emerging strategy to replace traditional fossil fuels. Value-added lignin biomass reduces the waste pollution in the environment and provides a green path of conversion to obtain renewable resources. The technology is designed to produce biofuels, biomaterials and value-added products from lignocellulosic biomass. In the biorefinery process, the pretreatment step is required to reduce the recalcitrant structure of lignocellulose biomass and improve the enzymatic digestion. There is still a gap in the full and deep understanding of the biorefinery process including the pretreatment process, thus it is necessary to provide optimized and adapted biorefinery solutions to cope with the conversion process in different biorefineries to further provide efficiency in industrial applications. Current research progress on value-added applications of lignocellulosic biomass still stagnates at the biofuel phase, and there is a lack of comprehensive discussion of emerging potential applications. This review article explores the advantages, disadvantages and properties of pretreatment methods including physical, chemical, physico-chemical and biological pretreatment methods. Value-added bioproducts produced from lignocellulosic biomass were comprehensively evaluated in terms of encompassing biochemical products , cosmetics, pharmaceuticals, potent functional materials from cellulose and lignin, waste management alternatives, multifunctional carbon materials and eco-friendly products. This review article critically identifies research-related to sustainability of lignocellulosic biomass to promote the development of green chemistry and to facilitate the refinement of high-value, environmentally-friendly materials. In addition, to align commercialized practice of lignocellulosic biomass application towards the 21st century, this paper provides a comprehensive analysis of lignocellulosic biomass biorefining and the utilization of biorefinery green technologies is further analyzed as being considered sustainable, including having potential benefits in terms of environmental, economic and social impacts. This facilitates sustainability options for biorefinery processes by providing policy makers with intuitive evaluation and guidance., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
38. Performance of Malaysian kenaf Hibiscus cannabinus callus biomass and exopolysaccharide production in a novel liquid culture.
- Author
-
'Aizat Norhisham D, Md Saad N, Ahmad Usuldin SR, Vayabari DAG, Ilham Z, Ibrahim MF, Show PL, and Wan-Mohtar WAAQI
- Subjects
- Biomass, Cell Culture Techniques, Sucrose, Acetates, Hibiscus
- Abstract
The versatility of a well-known fibrous crop, Hibiscus cannabinus (kenaf) is still relatively new to many. Kenaf's potential applications, which can be extended even into critical industries such as pharmaceutical and food industries, have always been overshadowed by its traditionally grown fiber. Therefore, this study aimed to venture into the biotechnological approach in reaping the benefits of kenaf through plant cell suspension culture to maximize the production of kenaf callus biomass (KCB) and exopolysaccharide (EPS), which is deemed to be more sustainable. A growth curve was established which indicates that cultivating kenaf callus in suspension culture for 22 days gives the highest KCB (9.09 ± 1.2 g/L) and EPS (1.1 ± 0.02 g/L). Using response surface methodology (RSM), it was found that sucrose concentration, agitation speed, and naphthalene acetic acid (NAA) concentration can affect the production of KCB and EPS significantly ( p < 0.05) while 2,4-dichlorophenoxy acetic acid (2,4-D) was deemed insignificant. To maximize the final yield of KCB and EPS, the final optimized variables are 50 g/L sucrose, 147.02 rpm, and 2 mg/L of NAA. To conclude, the optimized parameters for the cell suspension culture of kenaf callus serve as the blueprint for any sustainable large-scale production in the future and provide an alternative cultivating method to kenaf traditional farming.
- Published
- 2023
- Full Text
- View/download PDF
39. Bacterial cellulose nanocrystal as drug delivery system for overcoming the biological barrier of cyano-phycocyanin: a biomedical application of microbial product.
- Author
-
Munawaroh HSH, Anwar B, Yuliani G, Murni IC, Arindita NPY, Maulidah GS, Martha L, Hidayati NA, Chew KW, and Show PL
- Subjects
- Phycocyanin, Cellulose, Drug Delivery Systems, Nanoparticles, Nanostructures
- Abstract
Phycocyanin, produced by Spirulina platensis, has been reported as an anti-inflammatory, anti-hyperalgesia, antioxidant, anti-tumor, and anti-cancer agent. However, the ingestion of phycocyanin in the body is often hindered by its instability against gastric pH conditions. The nano-drug delivery system has developed as a promising platform for efficient drug delivery and improvement as well as drug efficacy. Bacterial cellulose nanocrystal (BCNC) has it superiority as DDS due to its inherent properties such as nanoscale dimension, large surface area, - biocompatibility, and non-toxic. To improve its mechanical properties, BCNC was crosslinked with glutaraldehyde and was analyzed as a potential candidate for DDS. The Fourier transform infrared analysis of the BCNC suggested that hydrolysis did not alter the chemical composition. The index of crystallinity of the BCNC was 18.31% higher than that of the original BC, suggesting that crystalline BC has been successfully isolated. The BCNC particle also showed a needle-like morphology which is 25 ± 10 nm in diameter and a mean length of 626 ± 172 nm. Crosslinked BCNC also had larger pores than the original BCNC along with higher thermal stability. Optimum phycocyanin adsorption on crosslinked BCNC reached 65.3% in 3 h. The release study shows that the crosslinked BCNC can protect the phycocyanin retardation by gastric fluid until phycocyanin reaches the targeted sites. This study provides an alternative potential DDS derived from natural bioresources with less expenses and better properties to promote the application of BCNC as functional nanomaterials in biomedical science.
- Published
- 2023
- Full Text
- View/download PDF
40. Bioengineering strategies of microalgae biomass for biofuel production: recent advancement and insight.
- Author
-
Sundaram T, Rajendran S, Gnanasekaran L, Rachmadona N, Jiang JJ, Khoo KS, and Show PL
- Subjects
- Biomass, Bioengineering, Biomedical Engineering, Biofuels, Microalgae
- Abstract
Algae-based biofuel developed over the past decade has become a viable substitute for petroleum-based energy sources. Due to their high lipid accumulation rates and low carbon dioxide emissions, microalgal species are considered highly valuable feedstock for biofuel generation. This review article presented the importance of biofuel and the flaws that need to be overcome to ensure algae-based biofuels are effective for future-ready bioenergy sources. Besides, several issues related to the optimization and engineering strategies to be implemented for microalgae-based biofuel derivatives and their production were evaluated. In addition, the fundamental studies on the microalgae technology, experimental cultivation, and engineering processes involved in the development are all measures that are commendably used in the pre-treatment processes. The review article also provides a comprehensive overview of the latest findings about various algae species cultivation and biomass production. It concludes with the most recent data on environmental consequences, their relevance to global efforts to create microalgae-based biomass as effective biofuels, and the most significant threats and future possibilities.
- Published
- 2023
- Full Text
- View/download PDF
41. Biomass waste as an alternative source of carbon and silicon-based absorbents for CO 2 capturing application.
- Author
-
Suresh R, Gnanasekaran L, Rajendran S, Jalil AA, Soto-Moscoso M, Khoo KS, Ma Z, Halimatul Munawaroh HS, and Show PL
- Abstract
The production of low-cost solid adsorbents for carbon dioxide (CO
2 ) capture has gained massive consideration. Biomass wastes are preferred as precursors for synthesis of CO2 solid adsorbents, due to their high CO2 adsorption efficiency, and ease of scalable low-cost production. This review particularly focuses on waste biomass-derived adsorbents with their CO2 adsorption performances. Specifically, studies related to carbon (biochar and activated carbon) and silicon (silicates and geopolymers)-based adsorbents were summarized. The impact of experimental parameters including nature of biomass, synthesis route, carbonization temperature and type of activation methods on the CO2 adsorption capacities of biomass-derived pure carbon and silicon-based adsorbents were evaluated. The development of various enhancement strategies on biomass-derived adsorbents for CO2 capture and their responsible factors that impact adsorbent's CO2 capture proficiency were also reviewed. The possible CO2 adsorption mechanisms on the adsorbent's surface were highlighted. The challenges and research gaps identified in this research area have also been emphasized, which will help as further research prospects., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
42. Bridging artificial intelligence and fucoxanthin for the recovery and quantification from microalgae.
- Author
-
Chong JWR, Tang DYY, Leong HY, Khoo KS, Show PL, and Chew KW
- Subjects
- Humans, Fuzzy Logic, Neural Networks, Computer, Artificial Intelligence, Microalgae
- Abstract
Fucoxanthin is a carotenoid that possesses various beneficial medicinal properties for human well-being. However, the current extraction technologies and quantification techniques are still lacking in terms of cost validation, high energy consumption, long extraction time, and low yield production. To date, artificial intelligence (AI) models can assist and improvise the bottleneck of fucoxanthin extraction and quantification process by establishing new technologies and processes which involve big data, digitalization, and automation for efficiency fucoxanthin production. This review highlights the application of AI models such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS), capable of learning patterns and relationships from large datasets, capturing non-linearity, and predicting optimal conditions that significantly impact the fucoxanthin extraction yield. On top of that, combining metaheuristic algorithm such as genetic algorithm (GA) can further improve the parameter space and discovery of optimal conditions of ANN and ANFIS models, which results in high R
2 accuracy ranging from 98.28% to 99.60% after optimization. Besides, AI models such as support vector machine (SVM), convolutional neural networks (CNNs), and ANN have been leveraged for the quantification of fucoxanthin, either computer vision based on color space of images or regression analysis based on statistical data. The findings are reliable when modeling for the concentration of pigments with high R2 accuracy ranging from 66.0% - 99.2%. This review paper has reviewed the feasibility and potential of AI for the extraction and quantification purposes, which can reduce the cost, accelerate the fucoxanthin yields, and development of fucoxanthin-based products.- Published
- 2023
- Full Text
- View/download PDF
43. Sustainable circular biorefinery approach for novel building blocks and bioenergy production from algae using microbial fuel cell.
- Author
-
Tong KTX, Tan IS, Foo HCY, Show PL, Lam MK, and Wong MK
- Subjects
- Electricity, Electrodes, Biomass, Bioelectric Energy Sources
- Abstract
The imminent need for transition to a circular biorefinery using microbial fuel cells (MFC), based on the valorization of renewable resources, will ameliorate the carbon footprint induced by industrialization. MFC catalyzed by bioelectrochemical process drew significant attention initially for its exceptional potential for integrated production of biochemicals and bioenergy. Nonetheless, the associated costly bioproduct production and slow microbial kinetics have constrained its commercialization. This review encompasses the potential and development of macroalgal biomass as a substrate in the MFC system for L-lactic acid (L-LA) and bioelectricity generation. Besides, an insight into the state-of-the-art technological advancement in the MFC system is also deliberated in detail. Investigations in recent years have shown that MFC developed with different anolyte enhances power density from several µW/m
2 up to 8160 mW/m2 . Further, this review provides a plausible picture of macroalgal-based L-LA and bioelectricity circular biorefinery in the MFC system for future research directions.- Published
- 2023
- Full Text
- View/download PDF
44. Superior Performance of Iron-Coated Silver Nanoparticles and Cefoxitin as an Antibiotic Composite Against Methicillin-Resistant Staphylococcus aureus (MRSA): A Population Study.
- Author
-
Hadi N, Nakhaeitazreji S, Kakian F, Hashemizadeh Z, Ebrahiminezhad A, Chong JWR, Berenjian A, and Show PL
- Abstract
The synergistic effects of antimicrobial nanostructures with antibiotics present a promising solution for overcoming resistance in methicillin-resistant Staphylococcus aureus (MRSA). Previous studies have introduced iron as a novel coating for silver nanoparticles (AgNPs) to enhance both economic efficiency and potency against S. aureus. However, there are currently no available data on the potential of these novel nanostructures to reverse MRSA resistance. To address this gap, a population study was conducted within the MRSA community, collecting a total of 48 S. aureus isolates from skin lesions. Among these, 21 isolates (43.75%) exhibited cefoxitin resistance as determined by agar disk diffusion assay. Subsequently, a PCR test confirmed the presence of the mecA gene in 20 isolates, verifying them as MRSA. These results highlight the cefoxitin disk diffusion susceptibility test as an accurate screening method for predicting mecA-mediated resistance in MRSA. Synergy tests were performed on cefoxitin, serving as a marker antibiotic, and iron-coated AgNPs (Fe@AgNPs) in a combination study using the checkerboard assay. The average minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of cefoxitin were calculated as 11.55 mg/mL and 3.61 mg/mL, respectively. The findings indicated a synergistic effect (FIC index < 0.5) between Fe@AgNPs and cefoxitin against 90% of MRSA infections, while an additive effect (0.5 ≤ FIC index ≤ 1) could be expected in 10% of infections. These results suggest that Fe@AgNPs could serve as an economically viable candidate for co-administration with antibiotics to reverse resistance in MRSA infections within skin lesions. Such findings may pave the way for the development of future treatment strategies against MRSA infections., (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
45. Net zero emission in circular bioeconomy from microalgae biochar production: A renewed possibility.
- Author
-
Wu G, Tham PE, Chew KW, Munawaroh HSH, Tan IS, Wan-Mohtar WAAQI, Sriariyanun M, and Show PL
- Abstract
The rapid expansion of industrialization and continuous population growth have caused a steady increase in energy consumption. Despite using renewable energy, such as bioethanol, to replace fossil fuels had been strongly promoted, however the outcomes were underwhelming, resulting in excessive greenhouse gases (GHG) emissions. Microalgal biochar, as a carbon-rich material produced from the pyrolysis of biomass, provides a promising solution for achieving net zero emission. By utilizing microalgal biochar, these GHG emissions can be captured and stored efficiently. It also enhances soil fertility, improves water retention, and conduct bioremediation in agriculture and environmental remediation field. Moreover, incorporating microalgal biochar into a zero-waste biorefinery could boost the employ of biomass feedstocks effectively to produce valuable bioproducts while minimizing waste. This contributes to sustainability and aligns with the concepts of a circular bioeconomy. In addition, some challenges like commercialization and standardization will be addressed in the future., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
46. Recent advances and discoveries of microbial-based glycolipids: Prospective alternative for remediation activities.
- Author
-
Ng YJ, Chan SS, Khoo KS, Munawaroh HSH, Lim HR, Chew KW, Ling TC, Saravanan A, Ma Z, and Show PL
- Subjects
- Humans, Prospective Studies, Biodegradation, Environmental, Water, Glycolipids chemistry, Glycolipids metabolism, Surface-Active Agents chemistry, Surface-Active Agents metabolism
- Abstract
Surfactants have always been a prominent chemical that is useful in various sectors (e.g., cleaning agent production industry, textile industry and painting industry). This is due to the special ability of surfactants to reduce surface tension between two fluid surfaces (e.g., water and oil). However, the current society has long omitted the harmful effects of petroleum-based surfactants (e.g., health issues towards humans and reducing cleaning ability of water bodies) due to their usefulness in reducing surface tension. These harmful effects will significantly damage the environment and negatively affect human health. As such, there is an urgency to secure environmentally friendly alternatives such as glycolipids to reduce the effects of these synthetic surfactants. Glycolipids is a biomolecule that shares similar properties with surfactants that are naturally synthesized in the cell of living organisms, glycolipids are amphiphilic in nature and can form micelles when glycolipid molecules clump together, reducing surface tension between two surfaces as how a surfactant molecule is able to achieve. This review paper aims to provide a comprehensive study on the recent advances in bacteria cultivation for glycolipids production and current lab scale applications of glycolipids (e.g., medical and waste bioremediation). Studies have proven that glycolipids are effective anti-microbial agents, subsequently leading to an excellent anti-biofilm forming agent. Heavy metal and hydrocarbon contaminated soil can also be bioremediated via the use of glycolipids. The major hurdle in the commercialization of glycolipid production is that the cultivation stage and downstream extraction stage of the glycolipid production process induces a very high operating cost. This review provides several solutions to overcome this issue for glycolipid production for the commercialization of glycolipids (e.g., developing new cultivating and extraction techniques, using waste as cultivation medium for microbes and identifying new strains for glycolipid production). The contribution of this review aims to serve as a future guideline for researchers that are dealing with glycolipid biosurfactants by providing an in-depth review on the recent advances of glycolipid biosurfactants. By summarizing the points discussed as above, it is recommended that glycolipids can substitute synthetic surfactants as an environmentally friendly alternative., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023. Published by Elsevier Inc.)
- Published
- 2023
- Full Text
- View/download PDF
47. Smart solutions for clean air: An AI-guided approach to sustainable industrial pollution control in coal-fired power plant.
- Author
-
Lim JY, Teng SY, How BS, Loy ACM, Heo S, Jansen J, Show PL, and Yoo CK
- Subjects
- Humans, Artificial Intelligence, Reproducibility of Results, Particulate Matter analysis, Power Plants, Coal analysis, Air Pollutants analysis, Air Pollution prevention & control
- Abstract
Conventional fossil fuels are relied on heavily to meet the ever-increasing demand for energy required by human activities. However, their usage generates significant air pollutant emissions, such as NO
x , SOx , and particulate matter. As a result, a complete air pollutant control system is necessary. However, the intensive operation of such systems is expected to cause deterioration and reduce their efficiency. Therefore, this study evaluates the current air pollutant control configuration of a coal-powered plant and proposes an upgraded system. Using a year-long dataset of air pollutants collected at 30-min intervals from the plant's telemonitoring system, untreated flue gas was reconstructed with a variational autoencoder. Subsequently, a superstructure model with various technology options for treating NOx , SOx , and particulate matter was developed. The most sustainable configuration, which included reburning, desulfurization with seawater, and dry electrostatic precipitator, was identified using an artificial intelligence (AI) model to meet economic, environmental, and reliability targets. Finally, the proposed system was evaluated using a Monte Carlo simulation to assess various scenarios with tightened discharge limits. The untreated flue gas was then evaluated using the most sustainable air pollutant control configuration, which demonstrated a total annual cost, environmental quality index, and reliability indices of 44.1 × 106 USD/year, 0.67, and 0.87, respectively., Competing Interests: Declaration of competing interest The authors affirm that they do not have any identifiable competing financial interests or personal associations that could have potentially influenced the research presented in this paper. Likelihood, there might be a potential conflict with one of the reviewers with a different perspective., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
48. Evaluation of adsorption performance and mechanisms of a highly effective 3D boron-doped graphene composite for amitriptyline pharmaceutical removal.
- Author
-
Tee WT, Loh NYL, Hiew BYZ, Show PL, Hanson S, Gan S, and Lee LY
- Subjects
- Amitriptyline, Boron, Adsorption, Pharmaceutical Preparations, Kinetics, Hydrogen-Ion Concentration, Graphite chemistry, Water Pollutants, Chemical chemistry
- Abstract
Three-dimensional heteroatom-doped graphene presents a state-of-the-art approach for effective remediation of pharmaceutical wastewater on account of its distinguished adsorption and physicochemical attributes. Amitriptyline is an emerging tricyclic antidepressant pollutant posing severe risks to living habitats through water supply and food chain. With ultra-large surface area and plentiful chemical functional groups, graphene oxide is a favorable adsorbent for decontaminating polluted water. Herein, a new boron-doped graphene oxide composite reinforced with carboxymethyl cellulose was successfully developed via solution-based synthesis. Characterization study revealed that the adsorbent was formed by graphene sheets intertwined into a porous network and engrafted with 13.37 at% of boron. The adsorbent has a zero charge at pH 6 and contained various chemical functional groups favoring the attachment of amitriptyline. It was also found that a mere 10 mg of adsorbent was able to achieve relatively high amitriptyline removal (89.31%) at 50 ppm solution concentration and 30 °C. The amitriptyline adsorption attained equilibrium within 60 min across solution concentrations ranging from 10 to 300 ppm. The kinetic and equilibrium of amitriptyline adsorption were well correlated to the pseudo-second-order and Langmuir models, respectively, portraying the highest Langmuir adsorption capacity of 737.4 mg/g. Notably, the predominant mechanism was chemisorption assisted by physisorption that contributed to the outstanding removal of amitriptyline. The saturated adsorbent was sufficiently regenerated using ethanol eluent. The results highlighted the impressive performance of the as-synthesized boron-doped adsorbent in treating amitriptyline-containing waste effluent., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
49. A potential paradigm in CRISPR/Cas systems delivery: at the crossroad of microalgal gene editing and algal-mediated nanoparticles.
- Author
-
Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, Li S, Li Y, Wang Z, Guo T, Zhou J, Tang DYY, and Show PL
- Subjects
- Gene Editing, CRISPR-Cas Systems genetics, Genetic Engineering, Microalgae genetics, Nanoparticles
- Abstract
Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae., (© 2023. BioMed Central Ltd., part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
50. Physico-chemical adsorption of cationic dyes using adsorbent synthesis via hydrochloric acid treatment and subcritical method from palm leaf biomass waste.
- Author
-
Ozdemir NC, Bilici Z, Yabalak E, Dizge N, Balakrishnan D, Khoo KS, and Show PL
- Subjects
- Hydrochloric Acid, Adsorption, Biomass, Thermodynamics, Methylene Blue chemistry, Kinetics, Cations, Hydrogen-Ion Concentration, Coloring Agents chemistry, Water Pollutants, Chemical chemistry
- Abstract
Today, where water resources are polluted rapidly, the need for eco-friendly green methods is gradually increasing. Conversion of waste biomass into functional adsorbents that can be utilized in water treatment is a win-win practice for both recycling and water pollution treatment. In this study, the adsorbent material was obtained from the palm leaf to contribute to sustainable green energy. This cellulose-containing adsorbent material was tested in the removal of Methylene Blue (MB) and Basic Red-18 (BR18). The properties of palm leaf adsorbent were determined. The best removal efficiencies and optimum conditions were determined in the adsorption process. In both dye types; the original pH value, 2 g/L adsorbent dose, 25 mg/L dye concentration, and 120 min were chosen as the optimum conditions since the best removal efficiency was obtained in the experiments performed at 25 °C. At these conditions, the removal efficiencies were found to be 100% and 90% for BR18 and MB, respectively. In addition, adsorption kinetics, isotherms, and thermodynamic data were analyzed. For BR18 and MB, it was found to fit the Langmuir isotherm and pseudo-2nd order. Palm leaf adsorbent was used with an efficiency of over 50% in four consecutive cycles., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023. Published by Elsevier Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.