1. Rapidly Changing Range Limits in a Warming World: Critical Data Limitations and Knowledge Gaps for Advancing Understanding of Mangrove Range Dynamics in the Southeastern USA
- Author
-
Rémi Bardou, Michael J. Osland, Steven Scyphers, Christine Shepard, Karen E. Aerni, Jahson B. Alemu I, Robert Crimian, Richard H. Day, Nicholas M. Enwright, Laura C. Feher, Sarah L. Gibbs, Kiera O’Donnell, Savannah H. Swinea, Kalaina Thorne, Sarit Truskey, Anna R. Armitage, Ronald Baker, Josh L. Breithaupt, Kyle C. Cavanaugh, Just Cebrian, Karen Cummins, Donna J. Devlin, Jacob Doty, William L. Ellis, Ilka C. Feller, Christopher A. Gabler, Yiyang Kang, David A. Kaplan, John Paul Kennedy, Ken W. Krauss, Margaret M. Lamont, Kam-biu Liu, Melinda Martinez, Ashley M. Matheny, Giovanna M. McClenachan, Karen L. McKee, Irving A. Mendelssohn, Thomas C. Michot, Christopher J. Miller, Jena A. Moon, Ryan P. Moyer, James Nelson, Richard O’Connor, James W. Pahl, Jonathan L. Pitchford, C. Edward Proffitt, Tracy Quirk, Kara R. Radabaugh, Whitney A. Scheffel, Delbert L. Smee, Caitlin M. Snyder, Eric Sparks, Kathleen M. Swanson, William C. Vervaeke, Carolyn A. Weaver, Jonathan Willis, Erik S. Yando, Qiang Yao, and A. Randall Hughes
- Subjects
Ecology ,Aquatic Science ,Ecology, Evolution, Behavior and Systematics - Abstract
Climate change is altering species’ range limits and transforming ecosystems. For example, warming temperatures are leading to the range expansion of tropical, cold-sensitive species at the expense of their cold-tolerant counterparts. In some temperate and subtropical coastal wetlands, warming winters are enabling mangrove forest encroachment into salt marsh, which is a major regime shift that has significant ecological and societal ramifications. Here, we synthesized existing data and expert knowledge to assess the distribution of mangroves near rapidly changing range limits in the southeastern USA. We used expert elicitation to identify data limitations and highlight knowledge gaps for advancing understanding of past, current, and future range dynamics. Mangroves near poleward range limits are often shorter, wider, and more shrublike compared to their tropical counterparts that grow as tall forests in freeze-free, resource-rich environments. The northern range limits of mangroves in the southeastern USA are particularly dynamic and climate sensitive due to abundance of suitable coastal wetland habitat and the exposure of mangroves to winter temperature extremes that are much colder than comparable range limits on other continents. Thus, there is need for methodological refinements and improved spatiotemporal data regarding changes in mangrove structure and abundance near northern range limits in the southeastern USA. Advancing understanding of rapidly changing range limits is critical for foundation plant species such as mangroves, as it provides a basis for anticipating and preparing for the cascading effects of climate-induced species redistribution on ecosystems and the human communities that depend on their ecosystem services.
- Published
- 2023