4 results on '"Pollard CJ"'
Search Results
2. Widespread exploitation of the honeybee by early Neolithic farmers.
- Author
-
Roffet-Salque M, Regert M, Evershed RP, Outram AK, Cramp LJ, Decavallas O, Dunne J, Gerbault P, Mileto S, Mirabaud S, Pääkkönen M, Smyth J, Šoberl L, Whelton HL, Alday-Ruiz A, Asplund H, Bartkowiak M, Bayer-Niemeier E, Belhouchet L, Bernardini F, Budja M, Cooney G, Cubas M, Danaher EM, Diniz M, Domboróczki L, Fabbri C, González-Urquijo JE, Guilaine J, Hachi S, Hartwell BN, Hofmann D, Hohle I, Ibáñez JJ, Karul N, Kherbouche F, Kiely J, Kotsakis K, Lueth F, Mallory JP, Manen C, Marciniak A, Maurice-Chabard B, Mc Gonigle MA, Mulazzani S, Özdoğan M, Perić OS, Perić SR, Petrasch J, Pétrequin AM, Pétrequin P, Poensgen U, Pollard CJ, Poplin F, Radi G, Stadler P, Stäuble H, Tasić N, Urem-Kotsou D, Vuković JB, Walsh F, Whittle A, Wolfram S, Zapata-Peña L, and Zoughlami J
- Subjects
- Africa, Northern, Animals, Archaeology, Ceramics chemistry, Ceramics history, Europe, Farmers history, Geographic Mapping, History, Ancient, Lipids analysis, Lipids chemistry, Middle East, Spatio-Temporal Analysis, Waxes chemistry, Beekeeping history, Bees, Waxes analysis, Waxes history
- Abstract
The pressures on honeybee (Apis mellifera) populations, resulting from threats by modern pesticides, parasites, predators and diseases, have raised awareness of the economic importance and critical role this insect plays in agricultural societies across the globe. However, the association of humans with A. mellifera predates post-industrial-revolution agriculture, as evidenced by the widespread presence of ancient Egyptian bee iconography dating to the Old Kingdom (approximately 2400 BC). There are also indications of Stone Age people harvesting bee products; for example, honey hunting is interpreted from rock art in a prehistoric Holocene context and a beeswax find in a pre-agriculturalist site. However, when and where the regular association of A. mellifera with agriculturalists emerged is unknown. One of the major products of A. mellifera is beeswax, which is composed of a complex suite of lipids including n-alkanes, n-alkanoic acids and fatty acyl wax esters. The composition is highly constant as it is determined genetically through the insect's biochemistry. Thus, the chemical 'fingerprint' of beeswax provides a reliable basis for detecting this commodity in organic residues preserved at archaeological sites, which we now use to trace the exploitation by humans of A. mellifera temporally and spatially. Here we present secure identifications of beeswax in lipid residues preserved in pottery vessels of Neolithic Old World farmers. The geographical range of bee product exploitation is traced in Neolithic Europe, the Near East and North Africa, providing the palaeoecological range of honeybees during prehistory. Temporally, we demonstrate that bee products were exploited continuously, and probably extensively in some regions, at least from the seventh millennium cal BC, likely fulfilling a variety of technological and cultural functions. The close association of A. mellifera with Neolithic farming communities dates to the early onset of agriculture and may provide evidence for the beginnings of a domestication process.
- Published
- 2015
- Full Text
- View/download PDF
3. Effects of pond salinization on survival rate of amphibian hosts infected with the chytrid fungus.
- Author
-
Stockwell MP, Storrie LJ, Pollard CJ, Clulow J, and Mahony MJ
- Subjects
- Animals, Longevity, Mycoses microbiology, New South Wales, Survival Rate, Anura, Chytridiomycota physiology, Mycoses epidemiology, Ponds chemistry, Salinity
- Abstract
The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of amphibian populations worldwide, but management options are limited. Recent studies show that sodium chloride (NaCl) has fungicidal properties that reduce the mortality rates of infected hosts in captivity. We investigated whether similar results can be obtained by adding salt to water bodies in the field. We increased the salinity of 8 water bodies to 2 or 4 ppt and left an additional 4 water bodies with close to 0 ppt and monitored salinity for 18 months. Captively bred tadpoles of green and golden bell frog (Litoria aurea) were released into each water body and their development, levels of B. dendrobatidis infection, and survival were monitored at 1, 4, and 12 months. The effect of salt on the abundance of nontarget organisms was also investigated in before and after style analyses. Salinities remained constant over time with little intervention. Hosts in water bodies with 4 ppt salt had a significantly lower prevalence of chytrid infection and higher survival, following metamorphosis, than hosts in 0 ppt salt. Tadpoles in the 4 ppt group were smaller in length after 1 month in the release site than those in the 0 and 2 ppt groups, but after metamorphosis body size in all water bodies was similar . In water bodies with 4 ppt salt, the abundance of dwarf tree frogs (Litoria fallax), dragonfly larvae, and damselfly larvae was lower than in water bodies with 0 and 2 ppt salt, which could have knock-on effects for community structure. Based on our results, salt may be an effective field-based B. dendrobatidis mitigation tool for lentic amphibians that could contribute to the conservation of numerous susceptible species. However, as in all conservation efforts, these benefits need to be weighed against negative effects on both target and nontarget organisms., (© 2014 Society for Conservation Biology.)
- Published
- 2015
- Full Text
- View/download PDF
4. Evaluating monitoring methods to guide adaptive management of a threatened amphibian (Litoria aurea).
- Author
-
Bower DS, Pickett EJ, Stockwell MP, Pollard CJ, Garnham JI, Sanders MR, Clulow J, and Mahony MJ
- Abstract
Prompt detection of declines in abundance or distribution of populations is critical when managing threatened species that have high population turnover. Population monitoring programs provide the tools necessary to identify and detect decreases in abundance that will threaten the persistence of key populations and should occur in an adaptive management framework which designs monitoring to maximize detection and minimize effort. We monitored a population of Litoria aurea at Sydney Olympic Park over 5 years using mark-recapture, capture encounter, noncapture encounter, auditory, tadpole trapping, and dip-net surveys. The methods differed in the cost, time, and ability to detect changes in the population. Only capture encounter surveys were able to simultaneously detect a decline in the occupancy, relative abundance, and recruitment of frogs during the surveys. The relative abundance of L. aurea during encounter surveys correlated with the population size obtained from mark-recapture surveys, and the methods were therefore useful for detecting a change in the population. Tadpole trapping and auditory surveys did not predict overall abundance and were therefore not useful in detecting declines. Monitoring regimes should determine optimal survey times to identify periods where populations have the highest detectability. Once this has been achieved, capture encounter surveys provide a cost-effective method of effectively monitoring trends in occupancy, changes in relative abundance, and detecting recruitment in populations.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.