6,337 results on '"Pandya, P."'
Search Results
2. Observation of Cosmic-Ray Anisotropy in the Southern Hemisphere with Twelve Years of Data Collected by the IceCube Neutrino Observatory
- Author
-
Abbasi, R., Ackermann, M., Adams, J., Agarwalla, S. K., Aguado, T., Aguilar, J. A., Ahlers, M., Alameddine, J. M., Amin, N. M., Andeen, K., Argüelles, C., Ashida, Y., Athanasiadou, S., Axani, S. N., Babu, R., Bai, X., V., A. Balagopal, Baricevic, M., Barwick, S. W., Bash, S., Basu, V., Bay, R., Beatty, J. J., Tjus, J. Becker, Beise, J., Bellenghi, C., BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Blaufuss, E., Bloom, L., Blot, S., Bontempo, F., Motzkin, J. Y. Book, Meneguolo, C. Boscolo, Böser, S., Botner, O., Böttcher, J., Braun, J., Brinson, B., Brisson-Tsavoussis, Z., Brostean-Kaiser, J., Brusa, L., Burley, R. T., Butterfield, D., Campana, M. A., Caracas, I., Carloni, K., Carpio, J., Chattopadhyay, S., Chau, N., Chen, Z., Chirkin, D., Choi, S., Clark, B. A., Cochling, C., Coleman, A., Coleman, P., Collin, G. H., Connolly, A., Conrad, J. M., Corley, R., Cowen, D. F., De Clercq, C., DeLaunay, J. J., Delgado, D., Deng, S., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., DeYoung, T., Diaz, A., Díaz-Vélez, J. C., Dierichs, P., Dittmer, M., Domi, A., Draper, L., Dujmovic, H., Durnford, D., Dutta, K., DuVernois, M. A., Ehrhardt, T., Eidenschink, L., Eimer, A., Eller, P., Ellinger, E., Mentawi, S. El, Elsässer, D., Engel, R., Erpenbeck, H., Esmail, W., Evans, J., Evenson, P. A., Fan, K. L., Fang, K., Farrag, K., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Fukami, S., Fürst, P., Gallagher, J., Ganster, E., Garcia, A., Garcia, M., Garg, G., Genton, E., Gerhardt, L., Ghadimi, A., Girard-Carillo, C., Glaser, C., Glüsenkamp, T., Gonzalez, J. G., Goswami, S., Granados, A., Grant, D., Gray, S. J., Griffin, S., Griswold, S., Groth, K. M., Guevel, D., Günther, C., Gutjahr, P., Gruchot, K., Ha, C., Haack, C., Hallgren, A., Halve, L., Halzen, F., Hamacher, L., Hamdaoui, H., Minh, M. Ha, Handt, M., Hanson, K., Hardin, J., Harnisch, A. A., Hatch, P., Haungs, A., Häußler, J., Hardy, A., Hayes, W., Helbing, K., Hellrung, J., Hermannsgabner, J., Heuermann, L., Heyer, N., Hickford, S., Hidvegi, A., Hill, C., Hill, G. C., Hmaid, R., Hoffman, K. D., Hori, S., Hoshina, K., Hostert, M., Hou, W., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., Ishihara, A., Iwakiri, W., Jacquart, M., Jain, S., Janik, O., Jansson, M., Jeong, M., Jin, M., Jones, B. J. P., Kamp, N., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katil, A., Katz, U., Kauer, M., Kelley, J. L., Khanal, M., Zathul, A. Khatee, Kheirandish, A., Kiryluk, J., Klein, S. R., Kobayashi, Y., Kochocki, A., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Koskinen, D. J., Koundal, P., Kowalski, M., Kozynets, T., Krieger, N., Krishnamoorthi, J., Kruiswijk, K., Krupczak, E., Kumar, A., Kun, E., Kurahashi, N., Lad, N., Gualda, C. Lagunas, Lamoureux, M., Larson, M. J., Lauber, F., Lazar, J. P., Lee, J. W., DeHolton, K. Leonard, Leszczyńska, A., Liao, J., Lincetto, M., Liu, Y. T., Liubarska, M., Love, C., Lu, L., Lucarelli, F., Luszczak, W., Lyu, Y., Madsen, J., Magnus, E., Mahn, K. B. M., Makino, Y., Manao, E., Mancina, S., Mand, A., Sainte, W. Marie, Mariş, I. C., Marka, S., Marka, Z., Marsee, M., Martinez-Soler, I., Maruyama, R., Mayhew, F., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Merckx, Y., Merten, L., Mitchell, J., Montaruli, T., Moore, R. W., Morii, Y., Morse, R., Moulai, M., Moy, A., Mukherjee, T., Naab, R., Nakos, M., Naumann, U., Necker, J., Negi, A., Neste, L., Neumann, M., Niederhausen, H., Nisa, M. U., Noda, K., Noell, A., Novikov, A., Pollmann, A. Obertacke, O'Dell, V., Olivas, A., Orsoe, R., Osborn, J., O'Sullivan, E., Palusova, V., Pandya, H., Park, N., Parker, G. K., Parrish, V., Paudel, E. N., Paul, L., Heros, C. Pérez de los, Pernice, T., Peterson, J., Pizzuto, A., Plum, M., Pontén, A., Popovych, Y., Rodriguez, M. Prado, Pries, B., Procter-Murphy, R., Przybylski, G. T., Pyras, L., Raab, C., Rack-Helleis, J., Rad, N., Ravn, M., Rawlins, K., Rechav, Z., Rehman, A., Resconi, E., Reusch, S., Rhode, W., Riedel, B., Rifaie, A., Roberts, E. J., Robertson, S., Rodan, S., Roellinghoff, G., Rongen, M., Rosted, A., Rott, C., Ruhe, T., Ruohan, L., Ryckbosch, D., Safa, I., Saffer, J., Salazar-Gallegos, D., Sampathkumar, P., Sandrock, A., Santander, M., Sarkar, S., Savelberg, J., Savina, P., Schaile, P., Schaufel, M., Schieler, H., Schindler, S., Schlickmann, L., Schlüter, B., Schlüter, F., Schmeisser, N., Schmidt, E., Schmidt, T., Schneider, J., Schröder, F. G., Schumacher, L., Schwirn, S., Sclafani, S., Seckel, D., Seen, L., Seikh, M., Seo, M., Seunarine, S., Myhr, P. Sevle, Shah, R., Shefali, S., Shimizu, N., Silva, M., Simmons, A., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Søgaard, A., Soldin, D., Soldin, P., Sommani, G., Spannfellner, C., Spiczak, G. M., Spiering, C., Stachurska, J., Stamatikos, M., Stanev, T., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Terliuk, A., Thiesmeyer, M., Thompson, W. G., Thorpe, A., Thwaites, J., Tilav, S., Tollefson, K., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Turcotte, R., Elorrieta, M. A. Unland, Upadhyay, A. K., Upshaw, K., Vaidyanathan, A., Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Vara, J., Varsi, F., Veitch-Michaelis, J., Venugopal, M., Vereecken, M., Carrasco, S. Vergara, Verpoest, S., Veske, D., Vijai, A., Walck, C., Wang, A., Weaver, C., Weigel, P., Weindl, A., Weldert, J., Wen, A. Y., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, N., Wiebusch, C. H., Williams, D. R., Witthaus, L., Wolf, M., Woodward, H., Wrede, G., Xu, X. W., Yanez, J. P., Yildizci, E., Yoshida, S., Young, R., Yu, S., Yuan, T., Zegarelli, A., Zhang, S., Zhang, Z., Zhelnin, P., Zilberman, P., and Zimmerman, M.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We analyzed the 7.92$\times 10^{11}$ cosmic-ray-induced muon events collected by the IceCube Neutrino Observatory from May 13, 2011, when the fully constructed experiment started to take data, to May 12, 2023. This dataset provides an up-to-date cosmic-ray arrival direction distribution in the Southern Hemisphere with unprecedented statistical accuracy covering more than a full period length of a solar cycle. Improvements in Monte Carlo event simulation and better handling of year-to-year differences in data processing significantly reduce systematic uncertainties below the level of statistical fluctuations compared to the previously published results. We confirm the observation of a change in the angular structure of the cosmic-ray anisotropy between 10 TeV and 1 PeV, more specifically in the 100-300 TeV energy range.
- Published
- 2024
3. Hostility Detection in UK Politics: A Dataset on Online Abuse Targeting MPs
- Author
-
Pandya, Mugdha, Jin, Mali, Bontcheva, Kalina, and Maynard, Diana
- Subjects
Computer Science - Computation and Language - Abstract
Numerous politicians use social media platforms, particularly X, to engage with their constituents. This interaction allows constituents to pose questions and offer feedback but also exposes politicians to a barrage of hostile responses, especially given the anonymity afforded by social media. They are typically targeted in relation to their governmental role, but the comments also tend to attack their personal identity. This can discredit politicians and reduce public trust in the government. It can also incite anger and disrespect, leading to offline harm and violence. While numerous models exist for detecting hostility in general, they lack the specificity required for political contexts. Furthermore, addressing hostility towards politicians demands tailored approaches due to the distinct language and issues inherent to each country (e.g., Brexit for the UK). To bridge this gap, we construct a dataset of 3,320 English tweets spanning a two-year period manually annotated for hostility towards UK MPs. Our dataset also captures the targeted identity characteristics (race, gender, religion, none) in hostile tweets. We perform linguistic and topical analyses to delve into the unique content of the UK political data. Finally, we evaluate the performance of pre-trained language models and large language models on binary hostility detection and multi-class targeted identity type classification tasks. Our study offers valuable data and insights for future research on the prevalence and nature of politics-related hostility specific to the UK.
- Published
- 2024
4. Exploring the Influence of Label Aggregation on Minority Voices: Implications for Dataset Bias and Model Training
- Author
-
Pandya, Mugdha, Moosavi, Nafise Sadat, and Maynard, Diana
- Subjects
Computer Science - Computation and Language - Abstract
Resolving disagreement in manual annotation typically consists of removing unreliable annotators and using a label aggregation strategy such as majority vote or expert opinion to resolve disagreement. These may have the side-effect of silencing or under-representing minority but equally valid opinions. In this paper, we study the impact of standard label aggregation strategies on minority opinion representation in sexism detection. We investigate the quality and value of minority annotations, and then examine their effect on the class distributions in gold labels, as well as how this affects the behaviour of models trained on the resulting datasets. Finally, we discuss the potential biases introduced by each method and how they can be amplified by the models.
- Published
- 2024
5. Openness And Partial Adjacency In One Variable TPTL
- Author
-
Krishna, Shankara Narayanan, Madnani, Khushraj, Nag, Agnipratim, and Pandya, Paritosh
- Subjects
Computer Science - Logic in Computer Science ,Computer Science - Formal Languages and Automata Theory ,03B44 ,F.4.1 ,F.4.3 - Abstract
Metric Temporal Logic (MTL) and Timed Propositional Temporal Logic (TPTL) extend Linear Temporal Logic (LTL) for real-time constraints, with MTL using time-bounded modalities and TPTL employing freeze quantifiers. Satisfiability for both is generally undecidable; however, MTL becomes decidable under certain non-punctual and partially-punctual restrictions. Punctuality can be restored trivially under similar non-punctual restrictions on TPTL even for one variable fragment. Our first contribution is to study more restricted notion of openness for 1-TPTL, under which punctuality can not be recovered. We show that even under such restrictions, the satisfiability checking does not get computationally easier. This implies that 1-TPTL (and hence TPTL) does not enjoy benefits of relaxing punctuality unlike MTL. As our second contribution we introduce a refined, partially adjacent restriction in 1-TPTL (PA-1-TPTL), and prove decidability for its satisfiability checking. We show that this logic is strictly more expressive than partially punctual Metric Temporal Logic, making this as one of the most expressive known boolean-closed decidable timed logic., Comment: arXiv admin note: text overlap with arXiv:1705.01501
- Published
- 2024
6. Advancements in Image Resolution: Super-Resolution Algorithm for Enhanced EOS-06 OCM-3 Data
- Author
-
Garg, Ankur, Shukla, Tushar, Joshi, Purvee, Ganguly, Debojyoti, Gujarati, Ashwin, Sarkar, Meenakshi, Babu, KN, Pandya, Mehul, Moorthi, S. Manthira, and Dhar, Debajyoti
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Electrical Engineering and Systems Science - Signal Processing - Abstract
The Ocean Color Monitor-3 (OCM-3) sensor is instrumental in Earth observation, achieving a critical balance between high-resolution imaging and broad coverage. This paper explores innovative imaging methods employed in OCM-3 and the transformative potential of super-resolution techniques to enhance image quality. The super-resolution model for OCM-3 (SOCM-3) addresses the challenges of contemporary satellite imaging by effectively navigating the trade-off between image clarity and swath width. With resolutions below 240 meters in Local Area Coverage (LAC) mode and below 750 meters in Global Area Coverage (GAC) mode, coupled with a wide 1550-kilometer swath and a 2-day revisit time, SOCM-3 emerges as a leading asset in remote sensing. The paper details the intricate interplay of atmospheric, motion, optical, and detector effects that impact image quality, emphasizing the necessity for advanced computational techniques and sophisticated algorithms for effective image reconstruction. Evaluation methods are thoroughly discussed, incorporating visual assessments using the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) metric and computational metrics such as Line Spread Function (LSF), Full Width at Half Maximum (FWHM), and Super-Resolution (SR) ratio. Additionally, statistical analyses, including power spectrum evaluations and target-wise spectral signatures, are employed to gauge the efficacy of super-resolution techniques. By enhancing both spatial resolution and revisit frequency, this study highlights significant advancements in remote sensing capabilities, providing valuable insights for applications across cryospheric, vegetation, oceanic, coastal, and domains. Ultimately, the findings underscore the potential of SOCM-3 to contribute meaningfully to our understanding of finescale oceanic phenomena and environmental monitoring., Comment: Preprint
- Published
- 2024
7. KinDEL: DNA-Encoded Library Dataset for Kinase Inhibitors
- Author
-
Chen, Benson, Danel, Tomasz, McEnaney, Patrick J., Jain, Nikhil, Novikov, Kirill, Akki, Spurti Umesh, Turnbull, Joshua L., Pandya, Virja Atul, Belotserkovskii, Boris P., Weaver, Jared Bryce, Biswas, Ankita, Nguyen, Dat, Dreiman, Gabriel H. S., Sultan, Mohammad, Stanley, Nathaniel, Whalen, Daniel M, Kanichar, Divya, Klein, Christoph, Fox, Emily, and Watts, R. Edward
- Subjects
Quantitative Biology - Quantitative Methods ,Computer Science - Machine Learning - Abstract
DNA-Encoded Libraries (DEL) are combinatorial small molecule libraries that offer an efficient way to characterize diverse chemical spaces. Selection experiments using DELs are pivotal to drug discovery efforts, enabling high-throughput screens for hit finding. However, limited availability of public DEL datasets hinders the advancement of computational techniques designed to process such data. To bridge this gap, we present KinDEL, one of the first large, publicly available DEL datasets on two kinases: Mitogen-Activated Protein Kinase 14 (MAPK14) and Discoidin Domain Receptor Tyrosine Kinase 1 (DDR1). Interest in this data modality is growing due to its ability to generate extensive supervised chemical data that densely samples around select molecular structures. Demonstrating one such application of the data, we benchmark different machine learning techniques to develop predictive models for hit identification; in particular, we highlight recent structure-based probabilistic approaches. Finally, we provide biophysical assay data, both on- and off-DNA, to validate our models on a smaller subset of molecules. Data and code for our benchmarks can be found at: https://github.com/insitro/kindel.
- Published
- 2024
8. Towards robust detection of entangled two-photon absorption
- Author
-
Pandya, Raj, Cameron, Patrick, Vernière, Chloé, Courme, Baptiste, Ithurria, Sandrine, Chin, Alex, Lhuillier, Emmanuel, and Defienne, Hugo
- Subjects
Quantum Physics - Abstract
Over the last 50 years entangled photon pairs have received attention for use in lowering the flux in two-photon absorption imaging and spectroscopy. Despite this, evidence for entangled two-photon absorption (ETPA) effects remain highly debated, especially at low-fluxes. Here, we structure the transverse spatial correlations of entangled photon pairs to evidence signs of ETPA at room-temperature in organic and inorganic chromophores, in the low-flux regime. We demonstrate our scheme to be robust to common artifacts that have previously hampered detection of ETPA such as linear absorption and background fluorescence, and show that ETPA scales with transverse correlation area and chromophore two-photon cross-sections. Our results present a step towards verifying ETPA and experimentally exploring entangled light-matter interactions., Comment: 21 pages, 9 figures
- Published
- 2024
9. Impact of Connectivism on Knowledge and Willingness of Students in Higher Education
- Author
-
Bharti Pandya, BooYun Cho, Louise Patterson, and Mohamed Abaker
- Abstract
This study investigates the impact of connectivism on knowledge acquisition and the willingness of higher education students to apply that knowledge in practical settings. Using an experimental design, it investigates how connectivism manifests in learning processes, particularly focusing on a collaborative online international session (COIL) with 92 business management students from the UAE and South Korea. These students participated in a COIL session aimed at enhancing their understanding of diversity and inclusion management concepts. The study utilized an independent t-test to evaluate the effectiveness of COIL, comparing groups exposed to different modes of participation (connectivism mode and nonconnectivism mode). The results highlight connectivism's role in increasing students' willingness to utilize acquired knowledge. As a connectivism approach, COIL proves pivotal in applying learning practically. This research offers significant insights for curriculum designers, educators, and scholars, demonstrating the impact of social connectivism on learning enhancement. It provides valuable information for incorporating connectivism into traditional educational models, thereby enriching the theoretical and methodological understanding of the relationship between connectivism, COIL, knowledge acquisition, and application willingness. This study is particularly relevant for educators looking to integrate innovative methods in their teaching and expand the scope of knowledge and skill development for future work.
- Published
- 2024
- Full Text
- View/download PDF
10. Estimating Body Volume and Height Using 3D Data
- Author
-
Sonar, Vivek Ganesh, Jan, Muhammad Tanveer, Wells, Mike, Pandya, Abhijit, Engstrom, Gabriela, Shih, Richard, and Furht, Borko
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence - Abstract
Accurate body weight estimation is critical in emergency medicine for proper dosing of weight-based medications, yet direct measurement is often impractical in urgent situations. This paper presents a non-invasive method for estimating body weight by calculating total body volume and height using 3D imaging technology. A RealSense D415 camera is employed to capture high-resolution depth maps of the patient, from which 3D models are generated. The Convex Hull Algorithm is then applied to calculate the total body volume, with enhanced accuracy achieved by segmenting the point cloud data into multiple sections and summing their individual volumes. The height is derived from the 3D model by identifying the distance between key points on the body. This combined approach provides an accurate estimate of body weight, improving the reliability of medical interventions where precise weight data is unavailable. The proposed method demonstrates significant potential to enhance patient safety and treatment outcomes in emergency settings., Comment: 6 pages
- Published
- 2024
11. Robots that Learn to Safely Influence via Prediction-Informed Reach-Avoid Dynamic Games
- Author
-
Pandya, Ravi, Liu, Changliu, and Bajcsy, Andrea
- Subjects
Computer Science - Robotics - Abstract
Robots can influence people to accomplish their tasks more efficiently: autonomous cars can inch forward at an intersection to pass through, and tabletop manipulators can go for an object on the table first. However, a robot's ability to influence can also compromise the safety of nearby people if naively executed. In this work, we pose and solve a novel robust reach-avoid dynamic game which enables robots to be maximally influential, but only when a safety backup control exists. On the human side, we model the human's behavior as goal-driven but conditioned on the robot's plan, enabling us to capture influence. On the robot side, we solve the dynamic game in the joint physical and belief space, enabling the robot to reason about how its uncertainty in human behavior will evolve over time. We instantiate our method, called SLIDE (Safely Leveraging Influence in Dynamic Environments), in a high-dimensional (39-D) simulated human-robot collaborative manipulation task solved via offline game-theoretic reinforcement learning. We compare our approach to a robust baseline that treats the human as a worst-case adversary, a safety controller that does not explicitly reason about influence, and an energy-function-based safety shield. We find that SLIDE consistently enables the robot to leverage the influence it has on the human when it is safe to do so, ultimately allowing the robot to be less conservative while still ensuring a high safety rate during task execution.
- Published
- 2024
12. GPUDrive: Data-driven, multi-agent driving simulation at 1 million FPS
- Author
-
Kazemkhani, Saman, Pandya, Aarav, Cornelisse, Daphne, Shacklett, Brennan, and Vinitsky, Eugene
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Hardware Architecture ,Computer Science - Graphics ,Computer Science - Performance - Abstract
Multi-agent learning algorithms have been successful at generating superhuman planning in various games but have had limited impact on the design of deployed multi-agent planners. A key bottleneck in applying these techniques to multi-agent planning is that they require billions of steps of experience. To enable the study of multi-agent planning at scale, we present GPUDrive, a GPU-accelerated, multi-agent simulator built on top of the Madrona Game Engine that can generate over a million simulation steps per second. Observation, reward, and dynamics functions are written directly in C++, allowing users to define complex, heterogeneous agent behaviors that are lowered to high-performance CUDA. We show that using GPUDrive we can effectively train reinforcement learning agents over many scenes in the Waymo Open Motion Dataset, yielding highly effective goal-reaching agents in minutes for individual scenes and enabling agents to navigate thousands of scenarios within hours. The code base with pre-trained agents is available at \url{https://github.com/Emerge-Lab/gpudrive}.
- Published
- 2024
13. Examining the local Universe isotropy with galaxy cluster velocity dispersion scaling relations
- Author
-
Pandya, A., Migkas, K., Reiprich, T. H., Stanford, A., Pacaud, F., Schellenberger, G., Lovisari, L., Ramos-Ceja, M. E., Nguyen-Dang, N. T., and Park, S.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In standard cosmology, the late Universe is assumed to be statistically homogeneous and isotropic. However, a recent study based on galaxy clusters by Migkas et al. (2021, arXiv:2103.13904) found an apparent spatial variation of approximately $9\%$ in the Hubble constant, $H_0$, across the sky. The authors utilised galaxy cluster scaling relations between various cosmology-dependent cluster properties and a cosmology-independent property, i.e., the temperature of the intracluster gas $(T)$. A position-dependent systematic bias of $T$ measurements can, in principle, result in an overestimation of apparent $H_0$ variations. In this study, we search for directional $T$ measurement biases by examining the scaling relation between the member galaxy velocity dispersion and the gas temperature $(\sigma_\mathrm{v}-T)$. Additionally, we search for apparent $H_0$ angular variations independently of $T$ by analysing the relations between the X-ray luminosity and Sunyaev-Zeldovich signal with the velocity dispersion, $L_\mathrm{X}-\sigma_\mathrm{v}$ and $Y_\mathrm{SZ}-\sigma_\mathrm{v}$. We utilise Monte Carlo simulations of isotropic cluster samples to quantify the statistical significance of any observed anisotropies. We find no significant directional $T$ measurement biases, and the probability that a directional $T$ bias causes the previously observed $H_0$ anisotropy is only $0.002\%$. On the other hand, from the joint analysis of the $L_\mathrm{X}-\sigma_\mathrm{v}$ and $Y_\mathrm{SZ}-\sigma_\mathrm{v}$ relations, the maximum variation of $H_0$ is found in the direction of $(295^\circ\pm71^\circ, -30^\circ\pm71^\circ)$ with a statistical significance of $3.64\sigma$, fully consistent with arXiv:2103.13904. Our findings strongly corroborate the previously detected spatial anisotropy of galaxy cluster scaling relations using a new independent cluster property, $\sigma_\mathrm{v}$., Comment: Submitted to the Astronomy & Astrophysics journal: 18 pages, 19 figures (main text), 7 figures (appendix)
- Published
- 2024
- Full Text
- View/download PDF
14. On the Generality and Persistence of Cosmological Stasis
- Author
-
Halverson, James and Pandya, Sneh
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Phenomenology ,High Energy Physics - Theory - Abstract
Hierarchical decays of $N$ matter species to radiation may balance against Hubble expansion to yield stasis, a new phase of cosmological evolution with constant matter and radiation abundances. We analyze stasis with various machine learning techniques on the full $2N$-dimensional space of decay rates and abundances, which serve as inputs to the system of Boltzmann equations that governs the dynamics. We construct a differentiable Boltzmann solver to maximize the number of stasis $e$-folds $\mathcal{N}$. High-stasis configurations obtained by gradient ascent motivate log-uniform distributions on rates and abundances to accompany power-law distributions of previous works. We demonstrate that random configurations drawn from these families of distributions regularly exhibit many $e$-folds of stasis. We additionally use them as priors in a Bayesian analysis conditioned on stasis, using stochastic variational inference with normalizing flows to model the posterior. All three numerical analyses demonstrate the generality of stasis and point to a new model in which the rates and abundances are exponential in the species index. We show that the exponential model solves the exact stasis equations, is an attractor, and satisfies $\mathcal{N}\propto N$, exhibiting inflation-level $e$-folding with a relatively low number of species. This is contrasted with the $\mathcal{N}\propto \log(N)$ scaling of power-law models. Finally, we discuss implications for the emergent string conjecture and string axiverse., Comment: 21 pages, 10 figures
- Published
- 2024
- Full Text
- View/download PDF
15. Preliminary Evidence for Lensing-Induced Alignments of High-Redshift Galaxies in JWST-CEERS
- Author
-
Pandya, Viraj, Loeb, Abraham, McGrath, Elizabeth J., Barro, Guillermo, Finkelstein, Steven L., Ferguson, Henry C., Grogin, Norman A., Kartaltepe, Jeyhan S., Koekemoer, Anton M., Papovich, Casey, Pirzkal, Nor, and Yung, L. Y. Aaron
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The majority of low-mass ($\log_{10} M_*/M_{\odot}=9-10$) galaxies at high redshift ($z>1$) appear elongated in projection. We use JWST-CEERS observations to explore the role of gravitational lensing in this puzzle. The typical galaxy-galaxy lensing shear $\gamma\sim1\%$ is too low to explain the predominance of elongated early galaxies with ellipticity $e\approx0.6$. However, non-parametric quantile regression with Bayesian Additive Regression Trees reveals hints of an excess of tangentially-aligned source-lens pairs with $\gamma>10\%$. On larger scales, we also find evidence for weak lensing shear. We rule out the null hypothesis of randomly oriented galaxies at $\gtrsim99\%$ significance in multiple NIRCam chips, modules and pointings. The number of such regions is small and attributable to chance, but coherent alignment patterns suggest otherwise. On the chip scale, the average complex ellipticity $\langle e\rangle\sim10\%$ is non-negligible and beyond the level of our PSF uncertainties. The shear variance $\langle\overline{\gamma}^2\rangle\sim10^{-3}$ is an order of magnitude above the conventional weak lensing regime but is more sensitive to PSF systematics, intrinsic alignments, cosmic variance and other biases. Taking it as an upper limit, the maximum implied ``cosmic shear'' is only a few percent and cannot explain the elongated shapes of early galaxies. The alignments themselves may arise from lensing by a protocluster or filament at $z\sim0.75$ where we find an overabundance of massive lens galaxies. We recommend a weak lensing search for overdensities in ``blank'' deep fields with JWST and the Roman Space Telescope., Comment: Submitted to ApJ, main body is 26 pages with 18 figures, comments welcome
- Published
- 2024
16. MHD activity induced coherent mode excitation in the edge plasma region of ADITYA-U Tokamak
- Author
-
Singh, Kaushlender, Dolui, Suman, Hegde, Bharat, Lachhvani, Lavkesh, Patel, Sharvil, Hoque, Injamul, Kumawat, Ashok K., Kumar, Ankit, Macwan, Tanmay, Raj, Harshita, Banerjee, Soumitra, Yadav, Komal, Kanik, Abha, Gautam, Pramila, Kumar, Rohit, Aich, Suman, Pradhan, Laxmikanta, Patel, Ankit, Galodiya, Kalpesh, Raju, Daniel, Jha, S. K., Jadeja, K. A., Patel, K. M., Pandya, S. N., Chaudhary, M. B., Tanna, R. L., Chattopadhyay, P. K., Pal, R., Saxena, Y. C., Sen, Abhijit, and Ghosh, Joydeep
- Subjects
Physics - Plasma Physics - Abstract
In this paper, we report the excitation of coherent density and potential fluctuations induced by magnetohydrodynamic (MHD) activity in the edge plasma region of ADITYA-U Tokamak. When the amplitude of the MHD mode, mainly the m/n = 2/1, increases beyond a threshold value of 0.3-0.4 %, coherent oscillations in the density and potential fluctuations are observed having the same frequency as that of the MHD mode. The mode numbers of these MHD induced density and potential fluctuations are obtained by Langmuir probes placed at different radial, poloidal, and toroidal locations in the edge plasma region. Detailed analyses of these Langmuir probe measurements reveal that the coherent mode in edge potential fluctuation has a mode structure of m/n = 2/1 whereas the edge density fluctuation has an m/n = 1/1 structure. It is further observed that beyond the threshold, the coupled power fraction scales almost linearly with the magnitude of magnetic fluctuations. Furthermore, the rise rates of the coupled power fraction for coherent modes in density and potential fluctuations are also found to be dependent on the growth rate of magnetic fluctuations. The disparate mode structures of the excited modes in density and plasma potential fluctuations suggest that the underlying mechanism for their existence is most likely due to the excitation of the global high-frequency branch of zonal flows occurring through the coupling of even harmonics of potential to the odd harmonics of pressure due to 1/R dependence of the toroidal magnetic field.
- Published
- 2024
17. NTSEBENCH: Cognitive Reasoning Benchmark for Vision Language Models
- Author
-
Pandya, Pranshu, Talwarr, Agney S, Gupta, Vatsal, Kataria, Tushar, Gupta, Vivek, and Roth, Dan
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Information Retrieval - Abstract
Cognitive textual and visual reasoning tasks, such as puzzles, series, and analogies, demand the ability to quickly reason, decipher, and evaluate patterns both textually and spatially. While LLMs and VLMs, through extensive training on large amounts of human-curated data, have attained a high level of pseudo-human intelligence in some common sense reasoning tasks, they still struggle with more complex reasoning tasks that require cognitive understanding. In this work, we introduce a new dataset, NTSEBench, designed to evaluate the cognitive multi-modal reasoning and problem-solving skills of large models. The dataset comprises 2,728 multiple-choice questions comprising of a total of 4,642 images across 26 categories sampled from the NTSE examination conducted nationwide in India, featuring both visual and textual general aptitude questions that do not rely on rote learning. We establish baselines on the dataset using state-of-the-art LLMs and VLMs. To facilitate a comparison between open source and propriety models, we propose four distinct modeling strategies to handle different modalities (text and images) in the dataset instances., Comment: 15 pages, 2 figures, 5 tables
- Published
- 2024
18. Performance Evaluation of Hashing Algorithms on Commodity Hardware
- Author
-
Pandya, Marut
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Distributed, Parallel, and Cluster Computing - Abstract
Hashing functions, which are created to provide brief and erratic digests for the message entered, are the primary cryptographic primitives used in blockchain networks. Hashing is employed in blockchain networks to create linked block lists, which offer safe and secure distributed repository storage for critical information. Due to the unique nature of the hash search problem in blockchain networks, the most parallelization of calculations is possible. This technical report presents a performance evaluation of three popular hashing algorithms Blake3, SHA-256, and SHA-512. These hashing algorithms are widely used in various applications, such as digital signatures, message authentication, and password storage. It then discusses the performance metrics used to evaluate the algorithms, such as hash rate/throughput and memory usage. The evaluation is conducted on a range of hardware platforms, including desktop and VMs. The evaluation includes synthetic benchmarks. The results of the evaluation show that Blake3 generally outperforms both SHA-256 and SHA-512 in terms of throughput and latency. However, the performance advantage of Blake3 varies depending on the specific hardware platform and the size of the input data. The report concludes with recommendations for selecting the most suitable hashing algorithm for a given application, based on its performance requirements and security needs. The evaluation results can also inform future research and development efforts to improve the performance and security of hashing algorithms., Comment: 9 Pages. Technical report
- Published
- 2024
19. Unifying principle for Hall coefficient in systems near magnetic instability
- Author
-
Pandya, Jalaja and Singh, Navinder
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Superconductivity - Abstract
Typically, Hall coefficient of materials near magnetic instabilities exhibits pronounced temperature dependence. To explore the reasons involved, we studied the temperature dependence of Hall coefficient in $Cr_{1-x}V_x$, $V_{2-y}O_3$ and some high-$T_c$ superconducting cuprates. We argue that it can be rationalized using the following unifying principle:\textit{ When a system is near a magnetic instability and temperature is reduced towards the instability, there is a progressive "loss" of carriers (progressive "tying down" of electrons) as they participate in long-lived and long-ranged magnetic correlations.} In other words, magnetic correlations grow in space and are longer-lived as temperature is reduced towards the magnetic instability. This is the mechanism behind reduced carrier density with reducing temperature and leads to an enhancement of the Hall coefficient. This unifying principle is implemented and quantitative analysis is done using the Gor'kov Teitel'baum Thermal Activation (GTTA) model. We also show that the Hall angle data can be understood using one relaxation time (in contrast to the "two-relaxation" times idea of Anderson) by taking into consideration of temperature dependence of carrier density. This unifying principle is shown to be working in above studied systems, but authors believe that it is of much more general validity., Comment: 15 pages, 17 figures, comments are welcomed
- Published
- 2024
20. Practical Guide for Causal Pathways and Sub-group Disparity Analysis
- Author
-
Kohankhaki, Farnaz, Raza, Shaina, Bamgbose, Oluwanifemi, Pandya, Deval, and Dolatabadi, Elham
- Subjects
Computer Science - Computers and Society ,Computer Science - Machine Learning ,Statistics - Methodology - Abstract
In this study, we introduce the application of causal disparity analysis to unveil intricate relationships and causal pathways between sensitive attributes and the targeted outcomes within real-world observational data. Our methodology involves employing causal decomposition analysis to quantify and examine the causal interplay between sensitive attributes and outcomes. We also emphasize the significance of integrating heterogeneity assessment in causal disparity analysis to gain deeper insights into the impact of sensitive attributes within specific sub-groups on outcomes. Our two-step investigation focuses on datasets where race serves as the sensitive attribute. The results on two datasets indicate the benefit of leveraging causal analysis and heterogeneity assessment not only for quantifying biases in the data but also for disentangling their influences on outcomes. We demonstrate that the sub-groups identified by our approach to be affected the most by disparities are the ones with the largest ML classification errors. We also show that grouping the data only based on a sensitive attribute is not enough, and through these analyses, we can find sub-groups that are directly affected by disparities. We hope that our findings will encourage the adoption of such methodologies in future ethical AI practices and bias audits, fostering a more equitable and fair technological landscape.
- Published
- 2024
21. Mixing effects on spectroscopy and partonic observables of mesons with logarithmic confining potential in a light-front quark model
- Author
-
Pandya, Bhoomika, Gurjar, Bheemsehan, Chakrabarti, Dipankar, Choi, Ho-Meoyng, and Ji, Chueng-Ryong
- Subjects
High Energy Physics - Phenomenology - Abstract
Using the variational principle, we systematically investigate the mass spectra and wave functions of both $1S$ and $2S$ state heavy pseudoscalar $(P)$ and vector $(V)$ mesons within the light-front quark model. This approach incorporates a Coulomb plus logarithmic confinement potential to accurately describe the constituent quark and antiquark dynamics. Additionally, spin hyperfine interactions are introduced perturbatively to compute the masses of pseudoscalar and vector mesons. The present analyses of the $1S$ and $2S$ states require the consideration of mixing between them to account for empirical constraints. These constraints include the mass gap $\Delta M_{P} > \Delta M_{V}$, where $\Delta M_{P(V)} = M^{2S}_{P(V)} - M^{1S}_{P(V)}$ and the hierarchy of the decay constants $f_{1S} > f_{2S}$. We find the optimal value of the mixing angle to be $\theta = 18^{\circ}$, significantly enhancing the consistency between our spectroscopic predictions and the experimental data compiled by the Particle Data Group (PDG). Furthermore, based on the predicted mass, the newly observed resonance $B_J(5840)$ could be assigned as a $2^1S_0$ state in the $B$ meson family. The study also reports various pertinent observables, including twist-2 distribution amplitudes, electromagnetic form factors, charge radii, $\xi$ moments, and transition form factors which are found to be consistent with both available lattice simulations and experimental data. In addition, our predicted branching ratios for the channels of $B^+ \rightarrow \tau^+ \nu_{\tau}$ as well as rare decays of $B^0$ and $B_s^0$ appear in accordance with experimental data., Comment: 20 pages, 9 figures
- Published
- 2024
22. Probing the connection between IceCube neutrinos and MOJAVE AGN
- Author
-
Abbasi, R., Ackermann, M., Adams, J., Agarwalla, S. K., Aguilar, J. A., Ahlers, M., Alameddine, J. M., Amin, N. M., Andeen, K., Argüelles, C., Ashida, Y., Athanasiadou, S., Ausborm, L., Axani, S. N., Bai, X., V., A. Balagopal, Baricevic, M., Barwick, S. W., Bash, S., Basu, V., Bay, R., Beatty, J. J., Tjus, J. Becker, Beise, J., Bellenghi, C., Benning, C., BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Blaufuss, E., Bloom, L., Blot, S., Bontempo, F., Motzkin, J. Y. Book, Meneguolo, C. Boscolo, Böser, S., Botner, O., Böttcher, J., Braun, J., Brinson, B., Brostean-Kaiser, J., Brusa, L., Burley, R. T., Butterfield, D., Campana, M. A., Caracas, I., Carloni, K., Carpio, J., Chattopadhyay, S., Chau, N., Chen, Z., Chirkin, D., Choi, S., Clark, B. A., Coleman, A., Collin, G. H., Connolly, A., Conrad, J. M., Corley, R., Cowen, D. F., Dave, P., De Clercq, C., DeLaunay, J. J., Delgado, D., Deng, S., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., DeYoung, T., Diaz, A., Díaz-Vélez, J. C., Dierichs, P., Dittmer, M., Domi, A., Draper, L., Dujmovic, H., Durnford, D., Dutta, K., DuVernois, M. A., Ehrhardt, T., Eidenschink, L., Eimer, A., Eller, P., Ellinger, E., Mentawi, S. El, Elsässer, D., Engel, R., Erpenbeck, H., Evans, J., Evenson, P. A., Fan, K. L., Fang, K., Farrag, K., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Fukami, S., Fürst, P., Gallagher, J., Ganster, E., Garcia, A., Garcia, M., Garg, G., Genton, E., Gerhardt, L., Ghadimi, A., Girard-Carillo, C., Glaser, C., Glüsenkamp, T., Gonzalez, J. G., Goswami, S., Granados, A., Grant, D., Gray, S. J., Gries, O., Griffin, S., Griswold, S., Groth, K. M., Guevel, D., Günther, C., Gutjahr, P., Ha, C., Haack, C., Hallgren, A., Halve, L., Halzen, F., Hamdaoui, H., Minh, M. Ha, Handt, M., Hanson, K., Hardin, J., Harnisch, A. A., Hatch, P., Haungs, A., Häußler, J., Helbing, K., Hellrung, J., Hermannsgabner, J., Heuermann, L., Heyer, N., Hickford, S., Hidvegi, A., Hill, C., Hill, G. C., Hoffman, K. D., Hori, S., Hoshina, K., Hostert, M., Hou, W., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., Ishihara, A., Iwakiri, W., Jacquart, M., Jain, S., Janik, O., Jansson, M., Japaridze, G. S., Jeong, M., Jin, M., Jones, B. J. P., Kamp, N., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katil, A., Katz, U., Kauer, M., Kelley, J. L., Khanal, M., Zathul, A. Khatee, Kheirandish, A., Kiryluk, J., Klein, S. R., Kochocki, A., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Koskinen, D. J., Koundal, P., Kovacevich, M., Kowalski, M., Kozynets, T., Krishnamoorthi, J., Kruiswijk, K., Krupczak, E., Kumar, A., Kun, E., Kurahashi, N., Lad, N., Gualda, C. Lagunas, Lamoureux, M., Larson, M. J., Latseva, S., Lauber, F., Lazar, J. P., Lee, J. W., DeHolton, K. Leonard, Leszczyńska, A., Liao, J., Lincetto, M., Liu, Y. T., Liubarska, M., Love, C., Lu, L., Lucarelli, F., Luszczak, W., Lyu, Y., Madsen, J., Magnus, E., Mahn, K. B. M., Makino, Y., Manao, E., Mancina, S., Sainte, W. Marie, Mariş, I. C., Marka, S., Marka, Z., Marsee, M., Martinez-Soler, I., Maruyama, R., Mayhew, F., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Merckx, Y., Merten, L., Micallef, J., Mitchell, J., Montaruli, T., Moore, R. W., Morii, Y., Morse, R., Moulai, M., Mukherjee, T., Naab, R., Nagai, R., Nakos, M., Naumann, U., Necker, J., Negi, A., Neste, L., Neumann, M., Niederhausen, H., Nisa, M. U., Noda, K., Noell, A., Novikov, A., Pollmann, A. Obertacke, O'Dell, V., Oeyen, B., Olivas, A., Orsoe, R., Osborn, J., O'Sullivan, E., Palusova, V., Pandya, H., Park, N., Parker, G. K., Paudel, E. N., Paul, L., Heros, C. Pérez de los, Pernice, T., Peterson, J., Pizzuto, A., Plum, M., Pontén, A., Popovych, Y., Rodriguez, M. Prado, Pries, B., Procter-Murphy, R., Przybylski, G. T., Raab, C., Rack-Helleis, J., Ravn, M., Rawlins, K., Rechav, Z., Rehman, A., Reichherzer, P., Resconi, E., Reusch, S., Rhode, W., Riedel, B., Rifaie, A., Roberts, E. J., Robertson, S., Rodan, S., Roellinghoff, G., Rongen, M., Rosted, A., Rott, C., Ruhe, T., Ruohan, L., Ryckbosch, D., Safa, I., Saffer, J., Salazar-Gallegos, D., Sampathkumar, P., Sandrock, A., Santander, M., Sarkar, S., Savelberg, J., Savina, P., Schaile, P., Schaufel, M., Schieler, H., Schindler, S., Schlickmann, L., Schlüter, B., Schlüter, F., Schmeisser, N., Schmidt, T., Schneider, J., Schröder, F. G., Schumacher, L., Sclafani, S., Seckel, D., Seikh, M., Seo, M., Seunarine, S., Myhr, P. Sevle, Shah, R., Shefali, S., Shimizu, N., Silva, M., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Søgaard, A., Soldin, D., Soldin, P., Sommani, G., Spannfellner, C., Spiczak, G. M., Spiering, C., Stamatikos, M., Stanev, T., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Terliuk, A., Thiesmeyer, M., Thompson, W. G., Thwaites, J., Tilav, S., Tollefson, K., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Turcotte, R., Twagirayezu, J. P., Elorrieta, M. A. Unland, Upadhyay, A. K., Upshaw, K., Vaidyanathan, A., Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Vara, J., Varsi, F., Veitch-Michaelis, J., Venugopal, M., Vereecken, M., Carrasco, S. Vergara, Verpoest, S., Veske, D., Vijai, A., Walck, C., Wang, A., Weaver, C., Weigel, P., Weindl, A., Weldert, J., Wen, A. Y., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, N., Wiebusch, C. H., Williams, D. R., Witthaus, L., Wolf, A., Wolf, M., Wrede, G., Xu, X. W., Yanez, J. P., Yildizci, E., Yoshida, S., Young, R., Yu, S., Yuan, T., Zhang, Z., Zhelnin, P., Zilberman, P., and Zimmerman, M.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Active Galactic Nuclei (AGN) are prime candidate sources of the high-energy, astrophysical neutrinos detected by IceCube. This is demonstrated by the real-time multi-messenger detection of the blazar TXS 0506+056 and the recent evidence of neutrino emission from NGC 1068 from a separate time-averaged study. However, the production mechanism of the astrophysical neutrinos in AGN is not well established which can be resolved via correlation studies with photon observations. For neutrinos produced due to photohadronic interactions in AGN, in addition to a correlation of neutrinos with high-energy photons, there would also be a correlation of neutrinos with photons emitted at radio wavelengths. In this work, we perform an in-depth stacking study of the correlation between 15 GHz radio observations of AGN reported in the MOJAVE XV catalog, and ten years of neutrino data from IceCube. We also use a time-dependent approach which improves the statistical power of the stacking analysis. No significant correlation was found for both analyses and upper limits are reported. When compared to the IceCube diffuse flux, at 100 TeV and for a spectral index of 2.5, the upper limits derived are $\sim3\%$ and $\sim9\%$ for the time-averaged and time-dependent case, respectively., Comment: 14 Pages 7 Figures
- Published
- 2024
- Full Text
- View/download PDF
23. Search for a light sterile neutrino with 7.5 years of IceCube DeepCore data
- Author
-
Abbasi, R., Ackermann, M., Adams, J., Agarwalla, S. K., Aguilar, J. A., Ahlers, M., Alameddine, J. M., Amin, N. M., Andeen, K., Argüelles, C., Ashida, Y., Athanasiadou, S., Ausborm, L., Axani, S. N., Bai, X., V., A. Balagopal, Baricevic, M., Barwick, S. W., Bash, S., Basu, V., Bay, R., Beatty, J. J., Tjus, J. Becker, Beise, J., Bellenghi, C., Benning, C., BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Blaufuss, E., Bloom, L., Blot, S., Bontempo, F., Motzkin, J. Y. Book, Meneguolo, C. Boscolo, Böser, S., Botner, O., Böttcher, J., Braun, J., Brinson, B., Brostean-Kaiser, J., Brusa, L., Burley, R. T., Butterfield, D., Campana, M. A., Caracas, I., Carloni, K., Carpio, J., Chattopadhyay, S., Chau, N., Chen, Z., Chirkin, D., Choi, S., Clark, B. A., Coleman, A., Collin, G. H., Connolly, A., Conrad, J. M., Corley, R., Cowen, D. F., Dave, P., De Clercq, C., DeLaunay, J. J., Delgado, D., Deng, S., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., DeYoung, T., Diaz, A., Díaz-Vélez, J. C., Dierichs, P., Dittmer, M., Domi, A., Draper, L., Dujmovic, H., Durnford, D., Dutta, K., DuVernois, M. A., Ehrhardt, T., Eidenschink, L., Eimer, A., Eller, P., Ellinger, E., Mentawi, S. El, Elsässer, D., Engel, R., Erpenbeck, H., Evans, J., Evenson, P. A., Fan, K. L., Fang, K., Farrag, K., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Fukami, S., Fürst, P., Gallagher, J., Ganster, E., Garcia, A., Garcia, M., Garg, G., Genton, E., Gerhardt, L., Ghadimi, A., Girard-Carillo, C., Glaser, C., Glüsenkamp, T., Gonzalez, J. G., Goswami, S., Granados, A., Grant, D., Gray, S. J., Gries, O., Griffin, S., Griswold, S., Groth, K. M., Guevel, D., Günther, C., Gutjahr, P., Ha, C., Haack, C., Hallgren, A., Halve, L., Halzen, F., Hamdaoui, H., Minh, M. Ha, Handt, M., Hanson, K., Hardin, J., Harnisch, A. A., Hatch, P., Haungs, A., Häußler, J., Helbing, K., Hellrung, J., Hermannsgabner, J., Heuermann, L., Heyer, N., Hickford, S., Hidvegi, A., Hill, C., Hill, G. C., Hoffman, K. D., Hori, S., Hoshina, K., Hostert, M., Hou, W., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., Ishihara, A., Iwakiri, W., Jacquart, M., Jain, S., Janik, O., Jansson, M., Japaridze, G. S., Jeong, M., Jin, M., Jones, B. J. P., Kamp, N., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katil, A., Katz, U., Kauer, M., Kelley, J. L., Khanal, M., Zathul, A. Khatee, Kheirandish, A., Kiryluk, J., Klein, S. R., Kochocki, A., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Koskinen, D. J., Koundal, P., Kovacevich, M., Kowalski, M., Kozynets, T., Krishnamoorthi, J., Kruiswijk, K., Krupczak, E., Kumar, A., Kun, E., Kurahashi, N., Lad, N., Gualda, C. Lagunas, Lamoureux, M., Larson, M. J., Latseva, S., Lauber, F., Lazar, J. P., Lee, J. W., DeHolton, K. Leonard, Leszczyńska, A., Liao, J., Lincetto, M., Liu, Y. T., Liubarska, M., Love, C., Lu, L., Lucarelli, F., Luszczak, W., Lyu, Y., Madsen, J., Magnus, E., Mahn, K. B. M., Makino, Y., Manao, E., Mancina, S., Sainte, W. Marie, Mariş, I. C., Marka, S., Marka, Z., Marsee, M., Martinez-Soler, I., Maruyama, R., Mayhew, F., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Merckx, Y., Merten, L., Micallef, J., Mitchell, J., Montaruli, T., Moore, R. W., Morii, Y., Morse, R., Moulai, M., Mukherjee, T., Naab, R., Nagai, R., Nakos, M., Naumann, U., Necker, J., Negi, A., Neste, L., Neumann, M., Niederhausen, H., Nisa, M. U., Noda, K., Noell, A., Novikov, A., Pollmann, A. Obertacke, O'Dell, V., Oeyen, B., Olivas, A., Orsoe, R., Osborn, J., O'Sullivan, E., Palusova, V., Pandya, H., Park, N., Parker, G. K., Paudel, E. N., Paul, L., Heros, C. Pérez de los, Pernice, T., Peterson, J., Pizzuto, A., Plum, M., Pontén, A., Popovych, Y., Rodriguez, M. Prado, Pries, B., Procter-Murphy, R., Przybylski, G. T., Raab, C., Rack-Helleis, J., Ravn, M., Rawlins, K., Rechav, Z., Rehman, A., Reichherzer, P., Resconi, E., Reusch, S., Rhode, W., Riedel, B., Rifaie, A., Roberts, E. J., Robertson, S., Rodan, S., Roellinghoff, G., Rongen, M., Rosted, A., Rott, C., Ruhe, T., Ruohan, L., Ryckbosch, D., Safa, I., Saffer, J., Salazar-Gallegos, D., Sampathkumar, P., Sandrock, A., Santander, M., Sarkar, S., Savelberg, J., Savina, P., Schaile, P., Schaufel, M., Schieler, H., Schindler, S., Schlickmann, L., Schlüter, B., Schlüter, F., Schmeisser, N., Schmidt, T., Schneider, J., Schröder, F. G., Schumacher, L., Sclafani, S., Seckel, D., Seikh, M., Seo, M., Seunarine, S., Myhr, P. Sevle, Shah, R., Shefali, S., Shimizu, N., Silva, M., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Søgaard, A., Soldin, D., Soldin, P., Sommani, G., Spannfellner, C., Spiczak, G. M., Spiering, C., Stamatikos, M., Stanev, T., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Terliuk, A., Thiesmeyer, M., Thompson, W. G., Thwaites, J., Tilav, S., Tollefson, K., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Turcotte, R., Twagirayezu, J. P., Elorrieta, M. A. Unland, Upadhyay, A. K., Upshaw, K., Vaidyanathan, A., Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Vara, J., Varsi, F., Veitch-Michaelis, J., Venugopal, M., Vereecken, M., Carrasco, S. Vergara, Verpoest, S., Veske, D., Vijai, A., Walck, C., Wang, A., Weaver, C., Weigel, P., Weindl, A., Weldert, J., Wen, A. Y., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, N., Wiebusch, C. H., Williams, D. R., Witthaus, L., Wolf, A., Wolf, M., Wrede, G., Xu, X. W., Yanez, J. P., Yildizci, E., Yoshida, S., Young, R., Yu, S., Yuan, T., Zhang, Z., Zhelnin, P., Zilberman, P., and Zimmerman, M.
- Subjects
High Energy Physics - Experiment - Abstract
We present a search for an eV-scale sterile neutrino using 7.5 years of data from the IceCube DeepCore detector. The analysis uses a sample of 21,914 events with energies between 5 and 150 GeV to search for sterile neutrinos through atmospheric muon neutrino disappearance. Improvements in event selection and treatment of systematic uncertainties provide greater statistical power compared to previous DeepCore sterile neutrino searches. Our results are compatible with the absence of mixing between active and sterile neutrino states, and we place constraints on the mixing matrix elements $|U_{\mu 4}|^2 < 0.0534$ and $|U_{\tau 4}|^2 < 0.0574$ at 90% CL under the assumption that $\Delta m^2_{41}\geq 1\;\mathrm{eV^2}$. These null results add to the growing tension between anomalous appearance results and constraints from disappearance searches in the 3+1 sterile neutrino landscape., Comment: 11 pages, 5 figures. Version accepted by Physical Review D for publication
- Published
- 2024
- Full Text
- View/download PDF
24. Liposarcoma of Maxilla- A Rare Case Report
- Author
-
Joshi, Gautami, Mukim, Aditya, Pandya, Shivam, Saraiya, Hemant, Chowdhary, Anish, Mehta, Shailee, Geethakrishna, VC, Arora, Ishan, and Pandya, Shashank
- Published
- 2024
- Full Text
- View/download PDF
25. Lower Extremity Injury Rates on Artificial Turf Versus Natural Grass Surfaces in the National Football League During the 2021 and 2022 Seasons.
- Author
-
Venishetty, Nikit, Xiao, Angel, Ghanta, Ramesh, Reddy, Rohit, Pandya, Nirav, and Feeley, Brian
- Subjects
NFL injuries ,artificial turf ,natural grass ,playing surfaces ,season-ending surgeries - Abstract
BACKGROUND: It has been argued that the use of artificial turf football fields in the National Football League (NFL) increases player injury risk compared with natural grass surfaces. PURPOSE/HYPOTHESIS: The purpose of this study was to quantify the rate of lower extremity injuries occurring in NFL players on artificial turf compared with natural grass surfaces and characterize the time missed due to injury and proportion of injuries requiring surgery. It was hypothesized that lower extremity injuries requiring surgical intervention would occur at a higher rate on artificial turf than on natural grass. STUDY DESIGN: Descriptive epidemiology study. METHODS: Lower extremity injury data for the 2021 and 2022 NFL seasons were obtained using publicly available records. Data collected included injury type, player position, player age, playing surface, weeks missed due to injury, and whether the patient underwent season-ending or minor surgery. Multivariable logistic regression was performed to determine the risk of season-ending surgery according to playing surface. RESULTS: When combining injuries for the 2021 and 2022 seasons (N = 718 injuries), the incidence rate of lower extremity injury was 1.22 injuries/game for natural grass and 1.42 injuries/game for artificial turf. The odds of a season-ending surgery were found to be significantly higher on artificial turf compared with natural grass (odds ratio = 1.60; 95% CI, 1.28-1.99; P < .05), while additional variables, including weather, age, position, week of injury occurrence, and history of prior injury, did not influence the odds of season-ending surgery. CONCLUSION: The 2021 and 2022 NFL seasons of our analysis demonstrated a higher incidence rate of injuries on artificial turf surfaces compared with natural grass surfaces. In addition, the odds of injury requiring season-ending surgery were found to be significantly higher on artificial turf compared with natural grass.
- Published
- 2024
26. Are Patient-Reported Outcome Measures for Anterior Cruciate Ligament Injuries Validated for Spanish Language and Culture?
- Author
-
Siu, Jeremy, Garcia-Lopez, Edgar, Pandya, Nirav, Feeley, Brian, and Shapiro, Lauren
- Subjects
ACL ,Spanish ,culture ,language ,patient-reported outcome measures ,validity - Abstract
BACKGROUND: Patient-reported outcome measures (PROMs) have been adopted as a way to measure patient self-rated physical function and health status for patients with anterior cruciate ligament (ACL) injuries. Although multiple PROMs exist and have been translated into various languages, the cross-cultural adaptation and validity of these PROMs for Spanish-speaking patients is unknown. PURPOSE: To evaluate the adaptation quality and psychometric properties of Spanish-language adaptations of PROMs for patients with ACL injuries. STUDY DESIGN: Scoping review; Level of evidence, 3. METHODS: Under PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we reviewed published studies related to adaptation quality and psychometric properties of Spanish PROMs in patients with ACL injuries. The methodological quality of the included studies was assessed using the Guidelines for the Process of Cross-Cultural Adaptation of Self-Reported Measures, the Quality Criteria for Psychometric Properties of Health Status Questionnaires, and the Consensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. The level of evidence for each PROM was determined based on the number of studies, methodological quality, consistency of results, and sample size. RESULTS: The initial search strategy identified 5687 articles. After removal of duplicates, 1882 titles were screened, and 114 articles were assessed for eligibility. Six articles were selected for final review, comprising 4 PROMs: the Lysholm knee score, the Anterior Cruciate Ligament-Return to Sport After Injury (ACL-RSI), the Lower Extremity Functional Scale, and the Lower Limb Functional Index. Three studies followed all 6 processes for cross-cultural adaptation. None of the studies demonstrated all 14 domains required for cross-cultural validity (eg, description of translator expertise). The ACL-RSI achieved the highest level of evidence, with 3 of 9 domains demonstrating moderate evidence. CONCLUSION: This review identified 4 instruments that have been translated for Spanish-speaking patients with ACL injuries, none of which demonstrated appropriate adaptation or robust psychometric properties. The study highlights the need for improvement in PROMs for Spanish-speaking patients and the potential for mismeasurement and inappropriate application of PROM results in patients with ACL injuries.
- Published
- 2024
27. WHY DOES RACE/ETHNICITY MATTER IN CASES OF CHILDHOOD ASTHMA AROUND THE SALTON SEA?
- Author
-
Pandya, Athena E
- Abstract
Childhood asthma is a prevalent problem in the United States and is an illness that takesthe lives of many children every year. Children who live around the Salton Sea, a drying lake bedfilled with chemicals from agricultural runoff, have a rate of childhood asthma around twentypercent (double the national average). As the Sea’s lake bed dries, chemicals from the water arereleased into the air, contributing to increased childhood asthma and related chronic healthconditions. The population living next to the Salton Sea is mainly Latinx and IndigenousMexican. The goal of my capstone project will be to examine how race/ethnicity contributes tochildhood asthma conditions and why it matters. I will join an existing research project,Childhood Asthma and the Salton Sea, and join the project activity to collect data. I willregularly attend Community Advisory Board (CAB) meetings with caregivers and healthcareprofessionals focused on environmental and childhood asthma. Likewise, I will also participatein community talks with healthcare providers and caregivers of children with asthma. Duringthese activities, I will take notes and observe the role race/ethnicity plays in childhood asthma. Iwill be analyzing existing survey data about race/ethnicity, environment, and child health. Ianticipate finding a relationship between race/ethnicity and the rate of childhood asthma in theSalton Sea area. The findings will be important in raising awareness of the role of race/ethnicityin childhood asthma.
- Published
- 2024
28. FlowVQA: Mapping Multimodal Logic in Visual Question Answering with Flowcharts
- Author
-
Singh, Shubhankar, Chaurasia, Purvi, Varun, Yerram, Pandya, Pranshu, Gupta, Vatsal, Gupta, Vivek, and Roth, Dan
- Subjects
Computer Science - Computation and Language ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Information Retrieval ,Computer Science - Machine Learning - Abstract
Existing benchmarks for visual question answering lack in visual grounding and complexity, particularly in evaluating spatial reasoning skills. We introduce FlowVQA, a novel benchmark aimed at assessing the capabilities of visual question-answering multimodal language models in reasoning with flowcharts as visual contexts. FlowVQA comprises 2,272 carefully generated and human-verified flowchart images from three distinct content sources, along with 22,413 diverse question-answer pairs, to test a spectrum of reasoning tasks, including information localization, decision-making, and logical progression. We conduct a thorough baseline evaluation on a suite of both open-source and proprietary multimodal language models using various strategies, followed by an analysis of directional bias. The results underscore the benchmark's potential as a vital tool for advancing the field of multimodal modeling, providing a focused and challenging environment for enhancing model performance in visual and logical reasoning tasks., Comment: Accepted in ACL 2024 (Findings), 21 pages, 7 figures, 9 Tables
- Published
- 2024
29. AI-Based Copyright Detection Of An Image In a Video Using Degree Of Similarity And Image Hashing
- Author
-
Ashutosh and Pandya, Rahul Jashvantbhai
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Emerging Technologies ,Computer Science - Machine Learning - Abstract
The expanse of information available over the internet makes it difficult to identify whether a specific work is a replica or a duplication of a protected work, especially if we talk about visual representations. Strategies are planned to identify the utilization of the copyrighted image in a report. Still, we want to resolve the issue of involving a copyrighted image in a video and a calculation that could recognize the degree of similarity of the copyrighted picture utilized in the video, even for the pieces of the video that are not featured a lot and in the end perform characterization errands on those edges. Machine learning (ML) and artificial intelligence (AI) are vital to address this problem. Numerous associations have been creating different calculations to screen the identification of copyrighted work. This work means concentrating on those calculations, recognizing designs inside the information, and fabricating a more reasonable model for copyrighted image classification and detection. We have used different algorithms like- Image Processing, Convolutional Neural Networks (CNN), Image hashing, etc. Keywords- Copyright, Artificial Intelligence(AI), Copyrighted Image, Convolutional Neural Network(CNN), Image processing, Degree of similarity, Image Hashing., Comment: 5 pages, 13 figures
- Published
- 2024
30. Equilibrium States of Galactic Atmospheres II: Interpretation and Implications
- Author
-
Voit, G. M., Carr, C., Fielding, D. B., Pandya, V., Bryan, G. L., Donahue, M., Oppenheimer, B. D., and Somerville, R. S.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The scaling of galaxy properties with halo mass suggests that feedback loops regulate star formation, but there is no consensus yet about how those feedback loops work. To help clarify discussions of galaxy-scale feedback, Paper I presented a very simple model for supernova feedback that it called the minimalist regulator model. This followup paper interprets that model and discusses its implications. The model itself is an accounting system that tracks all of the mass and energy associated with a halo's circumgalactic baryons--the central galaxy's atmosphere. Algebraic solutions for the equilibrium states of that model reveal that star formation in low-mass halos self-regulates primarily by expanding the atmospheres of those halos, ultimately resulting in stellar masses that are insensitive to the mass-loading properties of galactic winds. What matters most is the proportion of supernova energy that couples with circumgalactic gas. However, supernova feedback alone fails to expand galactic atmospheres in higher-mass halos. According to the minimalist regulator model, an atmospheric contraction crisis ensues, which may be what triggers strong black-hole feedback. The model also predicts that circumgalactic medium properties emerging from cosmological simulations should depend largely on the specific energy of the outflows they produce, and we interpret the qualitative properties of several numerical simulations in light of that prediction., Comment: 15 pages, 3 figures, Submitted to ApJ
- Published
- 2024
31. Equilibrium States of Galactic Atmospheres I: The Flip Side of Mass Loading
- Author
-
Voit, G. M., Pandya, V., Fielding, D. B., Bryan, G. L., Carr, C., Donahue, M., Oppenheimer, B. D., and Somerville, R. S.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
This paper presents a new framework for understanding the relationship between a galaxy and its circumgalactic medium (CGM). It focuses on how imbalances between heating and cooling cause either expansion or contraction of the CGM. It does this by tracking \textit{all} of the mass and energy associated with a halo's baryons, including their gravitational potential energy, even if feedback has pushed some of those baryons beyond the halo's virial radius. We show how a star-forming galaxy's equilibrium state can be algebraically derived within the context of this framework, and we analyze how the equilibrium star formation rate depends on supernova feedback. We consider the consequences of varying the mass loading parameter etaM = Mdot_wind / Mdot_* relating a galaxy's gas mass outflow rate (Mdot_wind) to its star formation rate (Mdot_*) and obtain results that challenge common assumptions. In particular, we find that equilibrium star formation rates in low-mass galaxies are generally insensitive to mass loading, and when mass loading does matter, increasing it actually results in \textit{more} star formation because more supernova energy is needed to resist atmospheric contraction., Comment: 18 pages, 5 figures, submitted to ApJ
- Published
- 2024
32. IceCube Search for Neutrino Emission from X-ray Bright Seyfert Galaxies
- Author
-
Abbasi, R., Ackermann, M., Adams, J., Agarwalla, S. K., Aguilar, J. A., Ahlers, M., Alameddine, J. M., Amin, N. M., Andeen, K., Argüelles, C., Ashida, Y., Athanasiadou, S., Ausborm, L., Axani, S. N., Bai, X., V., A. Balagopal, Baricevic, M., Barwick, S. W., Bash, S., Basu, V., Bay, R., Beatty, J. J., Tjus, J. Becker, Beise, J., Bellenghi, C., Benning, C., BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Blaufuss, E., Bloom, L., Blot, S., Bontempo, F., Motzkin, J. Y. Book, Meneguolo, C. Boscolo, Böser, S., Botner, O., Böttcher, J., Braun, J., Brinson, B., Brostean-Kaiser, J., Brusa, L., Burley, R. T., Butterfield, D., Campana, M. A., Caracas, I., Carloni, K., Carpio, J., Chattopadhyay, S., Chau, N., Chen, Z., Chirkin, D., Choi, S., Clark, B. A., Coleman, A., Collin, G. H., Connolly, A., Conrad, J. M., Coppin, P., Corley, R., Correa, P., Cowen, D. F., Dave, P., De Clercq, C., DeLaunay, J. J., Delgado, D., Deng, S., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., DeYoung, T., Diaz, A., Díaz-Vélez, J. C., Dierichs, P., Dittmer, M., Domi, A., Draper, L., Dujmovic, H., Dutta, K., DuVernois, M. A., Ehrhardt, T., Eidenschink, L., Eimer, A., Eller, P., Ellinger, E., Mentawi, S. El, Elsässer, D., Engel, R., Erpenbeck, H., Evans, J., Evenson, P. A., Fan, K. L., Fang, K., Farrag, K., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Fukami, S., Fürst, P., Gallagher, J., Ganster, E., Garcia, A., Garcia, M., Garg, G., Genton, E., Gerhardt, L., Ghadimi, A., Girard-Carillo, C., Glaser, C., Glauch, T., Glüsenkamp, T., Gonzalez, J. G., Goswami, S., Granados, A., Grant, D., Gray, S. J., Gries, O., Griffin, S., Griswold, S., Groth, K. M., Günther, C., Gutjahr, P., Ha, C., Haack, C., Hallgren, A., Halve, L., Halzen, F., Hamdaoui, H., Minh, M. Ha, Handt, M., Hanson, K., Hardin, J., Harnisch, A. A., Hatch, P., Haungs, A., Häußler, J., Helbing, K., Hellrung, J., Hermannsgabner, J., Heuermann, L., Heyer, N., Hickford, S., Hidvegi, A., Hill, C., Hill, G. C., Hoffman, K. D., Hori, S., Hoshina, K., Hostert, M., Hou, W., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., Ishihara, A., Iwakiri, W., Jacquart, M., Janik, O., Jansson, M., Japaridze, G. S., Jeong, M., Jin, M., Jones, B. J. P., Kamp, N., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katil, A., Katz, U., Kauer, M., Kelley, J. L., Khanal, M., Zathul, A. Khatee, Kheirandish, A., Kiryluk, J., Klein, S. R., Kochocki, A., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Koskinen, D. J., Koundal, P., Kovacevich, M., Kowalski, M., Kozynets, T., Krishnamoorthi, J., Kruiswijk, K., Krupczak, E., Kumar, A., Kun, E., Kurahashi, N., Lad, N., Gualda, C. Lagunas, Lamoureux, M., Larson, M. J., Latseva, S., Lauber, F., Lazar, J. P., Lee, J. W., DeHolton, K. Leonard, Leszczyńska, A., Liao, J., Lincetto, M., Liu, Q. R., Liu, Y. T., Liubarska, M., Lohfink, E., Love, C., Mariscal, C. J. Lozano, Lu, L., Lucarelli, F., Luszczak, W., Lyu, Y., Madsen, J., Magnus, E., Mahn, K. B. M., Makino, Y., Manao, E., Mancina, S., Sainte, W. Marie, Mariş, I. C., Marka, S., Marka, Z., Marsee, M., Martinez-Soler, I., Maruyama, R., Mayhew, F., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Merckx, Y., Merten, L., Micallef, J., Mitchell, J., Montaruli, T., Moore, R. W., Morii, Y., Morse, R., Moulai, M., Mukherjee, T., Naab, R., Nagai, R., Nakos, M., Naumann, U., Necker, J., Negi, A., Neste, L., Neumann, M., Niederhausen, H., Nisa, M. U., Noda, K., Noell, A., Novikov, A., Pollmann, A. Obertacke, O'Dell, V., Oeyen, B., Olivas, A., Orsoe, R., Osborn, J., O'Sullivan, E., Pandya, H., Park, N., Parker, G. K., Paudel, E. N., Paul, L., Heros, C. Pérez de los, Pernice, T., Peterson, J., Philippen, S., Pizzuto, A., Plum, M., Pontén, A., Popovych, Y., Rodriguez, M. Prado, Pries, B., Procter-Murphy, R., Przybylski, G. T., Raab, C., Rack-Helleis, J., Ravn, M., Rawlins, K., Rechav, Z., Rehman, A., Reichherzer, P., Resconi, E., Reusch, S., Rhode, W., Riedel, B., Rifaie, A., Roberts, E. J., Robertson, S., Rodan, S., Roellinghoff, G., Rongen, M., Rosted, A., Rott, C., Ruhe, T., Ruohan, L., Ryckbosch, D., Safa, I., Saffer, J., Salazar-Gallegos, D., Sampathkumar, P., Sandrock, A., Santander, M., Sarkar, S., Savelberg, J., Savina, P., Schaile, P., Schaufel, M., Schieler, H., Schindler, S., Schlüter, B., Schlüter, F., Schmeisser, N., Schmidt, T., Schneider, J., Schröder, F. G., Schumacher, L., Sclafani, S., Seckel, D., Seikh, M., Seo, M., Seunarine, S., Myhr, P. Sevle, Shah, R., Shefali, S., Shimizu, N., Silva, M., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Søgaard, A., Soldin, D., Soldin, P., Sommani, G., Spannfellner, C., Spiczak, G. M., Spiering, C., Stamatikos, M., Stanev, T., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Terliuk, A., Thiesmeyer, M., Thompson, W. G., Thwaites, J., Tilav, S., Tollefson, K., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Turcotte, R., Twagirayezu, J. P., Elorrieta, M. A. Unland, Upadhyay, A. K., Upshaw, K., Vaidyanathan, A., Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Vara, J., Varsi, F., Veitch-Michaelis, J., Venugopal, M., Vereecken, M., Verpoest, S., Veske, D., Vijai, A., Walck, C., Wang, A., Weaver, C., Weigel, P., Weindl, A., Weldert, J., Wen, A. Y., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, N., Wiebusch, C. H., Williams, D. R., Witthaus, L., Wolf, A., Wolf, M., Wrede, G., Xu, X. W., Yanez, J. P., Yildizci, E., Yoshida, S., Young, R., Yu, S., Yuan, T., Zhang, Z., Zhelnin, P., Zilberman, P., and Zimmerman, M.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Experiment - Abstract
The recent IceCube detection of TeV neutrino emission from the nearby active galaxy NGC 1068 suggests that active galactic nuclei (AGN) could make a sizable contribution to the diffuse flux of astrophysical neutrinos. The absence of TeV $\gamma$-rays from NGC 1068 indicates neutrino production in the vicinity of the supermassive black hole, where the high radiation density leads to $\gamma$-ray attenuation. Therefore, any potential neutrino emission from similar sources is not expected to correlate with high-energy $\gamma$-rays. Disk-corona models predict neutrino emission from Seyfert galaxies to correlate with keV X-rays, as they are tracers of coronal activity. Using through-going track events from the Northern Sky recorded by IceCube between 2011 and 2021, we report results from a search for individual and aggregated neutrino signals from 27 additional Seyfert galaxies that are contained in the BAT AGN Spectroscopic Survey (BASS). Besides the generic single power-law, we evaluate the spectra predicted by the disk-corona model. Assuming all sources to be intrinsically similar to NGC 1068, our findings constrain the collective neutrino emission from X-ray bright Seyfert galaxies in the Northern Hemisphere, but, at the same time, show excesses of neutrinos that could be associated with the objects NGC 4151 and CGCG 420-015. These excesses result in a 2.7$\sigma$ significance with respect to background expectations., Comment: 17 pages, 9 figures
- Published
- 2024
33. Search for neutrino emission from hard X-ray AGN with IceCube
- Author
-
Abbasi, R., Ackermann, M., Adams, J., Agarwalla, S. K., Aguilar, J. A., Ahlers, M., Alameddine, J. M., Amin, N. M., Andeen, K., Argüelles, C., Ashida, Y., Athanasiadou, S., Ausborm, L., Axani, S. N., Bai, X., V., A. Balagopal, Baricevic, M., Barwick, S. W., Bash, S., Basu, V., Bay, R., Beatty, J. J., Tjus, J. Becker, Beise, J., Bellenghi, C., Benning, C., BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Blaufuss, E., Bloom, L., Blot, S., Bontempo, F., Motzkin, J. Y. Book, Meneguolo, C. Boscolo, Böser, S., Botner, O., Böttcher, J., Braun, J., Brinson, B., Brostean-Kaiser, J., Brusa, L., Burley, R. T., Butterfield, D., Campana, M. A., Caracas, I., Carloni, K., Carpio, J., Chattopadhyay, S., Chau, N., Chen, Z., Chirkin, D., Choi, S., Clark, B. A., Coleman, A., Collin, G. H., Connolly, A., Conrad, J. M., Coppin, P., Corley, R., Correa, P., Cowen, D. F., Dave, P., De Clercq, C., DeLaunay, J. J., Delgado, D., Deng, S., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., DeYoung, T., Diaz, A., Díaz-Vélez, J. C., Dierichs, P., Dittmer, M., Domi, A., Draper, L., Dujmovic, H., Dutta, K., DuVernois, M. A., Ehrhardt, T., Eidenschink, L., Eimer, A., Eller, P., Ellinger, E., Mentawi, S. El, Elsässer, D., Engel, R., Erpenbeck, H., Evans, J., Evenson, P. A., Fan, K. L., Fang, K., Farrag, K., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Fukami, S., Fürst, P., Gallagher, J., Ganster, E., Garcia, A., Garcia, M., Garg, G., Genton, E., Gerhardt, L., Ghadimi, A., Girard-Carillo, C., Glaser, C., Glüsenkamp, T., Gonzalez, J. G., Goswami, S., Granados, A., Grant, D., Gray, S. J., Gries, O., Griffin, S., Griswold, S., Groth, K. M., Günther, C., Gutjahr, P., Ha, C., Haack, C., Hallgren, A., Halve, L., Halzen, F., Hamdaoui, H., Minh, M. Ha, Handt, M., Hanson, K., Hardin, J., Harnisch, A. A., Hatch, P., Haungs, A., Häußler, J., Helbing, K., Hellrung, J., Hermannsgabner, J., Heuermann, L., Heyer, N., Hickford, S., Hidvegi, A., Hill, C., Hill, G. C., Hoffman, K. D., Hori, S., Hoshina, K., Hostert, M., Hou, W., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., Ishihara, A., Iwakiri, W., Jacquart, M., Jain, S., Janik, O., Jansson, M., Japaridze, G. S., Jeong, M., Jin, M., Jones, B. J. P., Kamp, N., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katil, A., Katz, U., Kauer, M., Kelley, J. L., Khanal, M., Zathul, A. Khatee, Kheirandish, A., Kiryluk, J., Klein, S. R., Kochocki, A., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Koskinen, D. J., Koundal, P., Kovacevich, M., Kowalski, M., Kozynets, T., Krishnamoorthi, J., Kruiswijk, K., Krupczak, E., Kumar, A., Kun, E., Kurahashi, N., Lad, N., Gualda, C. Lagunas, Lamoureux, M., Larson, M. J., Latseva, S., Lauber, F., Lazar, J. P., Lee, J. W., DeHolton, K. Leonard, Leszczyńska, A., Liao, J., Lincetto, M., Liu, Y. T., Liubarska, M., Love, C., Mariscal, C. J. Lozano, Lu, L., Lucarelli, F., Luszczak, W., Lyu, Y., Madsen, J., Magnus, E., Mahn, K. B. M., Makino, Y., Manao, E., Mancina, S., Sainte, W. Marie, Mariş, I. C., Marka, S., Marka, Z., Marsee, M., Martinez-Soler, I., Maruyama, R., Mayhew, F., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Merckx, Y., Merten, L., Micallef, J., Mitchell, J., Montaruli, T., Moore, R. W., Morii, Y., Morse, R., Moulai, M., Mukherjee, T., Naab, R., Nagai, R., Nakos, M., Naumann, U., Necker, J., Negi, A., Neste, L., Neumann, M., Niederhausen, H., Nisa, M. U., Noda, K., Noell, A., Novikov, A., Pollmann, A. Obertacke, O'Dell, V., Oeyen, B., Olivas, A., Orsoe, R., Osborn, J., O'Sullivan, E., Palusova, V., Pandya, H., Park, N., Parker, G. K., Paudel, E. N., Paul, L., Heros, C. Pérez de los, Pernice, T., Peterson, J., Philippen, S., Pizzuto, A., Plum, M., Pontén, A., Popovych, Y., Rodriguez, M. Prado, Pries, B., Privon, G. C., Procter-Murphy, R., Przybylski, G. T., Raab, C., Rack-Helleis, J., Ravn, M., Rawlins, K., Rechav, Z., Rehman, A., Reichherzer, P., Resconi, E., Reusch, S., Rhode, W., Riedel, B., Rifaie, A., Roberts, E. J., Robertson, S., Rodan, S., Roellinghoff, G., Rongen, M., Rosted, A., Rott, C., Ruhe, T., Ruohan, L., Ryckbosch, D., Safa, I., Saffer, J., Salazar-Gallegos, D., Sampathkumar, P., Sandrock, A., Santander, M., Sarkar, S., Savelberg, J., Savina, P., Schaile, P., Schaufel, M., Schieler, H., Schindler, S., Schlickmann, L., Schlüter, B., Schlüter, F., Schmeisser, N., Schmidt, T., Schneider, J., Schröder, F. G., Schumacher, L., Sclafani, S., Seckel, D., Seikh, M., Seo, M., Seunarine, S., Myhr, P. Sevle, Shah, R., Shefali, S., Shimizu, N., Silva, M., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Søgaard, A., Soldin, D., Soldin, P., Sommani, G., Spannfellner, C., Spiczak, G. M., Spiering, C., Stamatikos, M., Stanev, T., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Terliuk, A., Thiesmeyer, M., Thompson, W. G., Thwaites, J., Tilav, S., Tollefson, K., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Turcotte, R., Twagirayezu, J. P., Elorrieta, M. A. Unland, Upadhyay, A. K., Upshaw, K., Vaidyanathan, A., Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Vara, J., Varsi, F., Veitch-Michaelis, J., Venugopal, M., Vereecken, M., Verpoest, S., Veske, D., Vijai, A., Walck, C., Wang, A., Weaver, C., Weigel, P., Weindl, A., Weldert, J., Wen, A. Y., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, N., Wiebusch, C. H., Williams, D. R., Witthaus, L., Wolf, A., Wolf, M., Wrede, G., Xu, X. W., Yanez, J. P., Yildizci, E., Yoshida, S., Young, R., Yu, S., Yuan, T., Zhang, Z., Zhelnin, P., Zilberman, P., and Zimmerman, M.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Active Galactic Nuclei (AGN) are promising candidate sources of high-energy astrophysical neutrinos since they provide environments rich in matter and photon targets where cosmic ray interactions may lead to the production of gamma rays and neutrinos. We searched for high-energy neutrino emission from AGN using the $\textit{Swift}$-BAT Spectroscopic Survey (BASS) catalog of hard X-ray sources and 12 years of IceCube muon track data. First, upon performing a stacked search, no significant emission was found. Second, we searched for neutrinos from a list of 43 candidate sources and found an excess from the direction of two sources, Seyfert galaxies NGC 1068 and NGC 4151. We observed NGC 1068 at flux $\phi_{\nu_{\mu}+\bar{\nu}_{\mu}}$ = $4.02_{-1.52}^{+1.58} \times 10^{-11}$ TeV$^{-1}$ cm$^{-2}$ s$^{-1}$ normalized at 1 TeV, with power-law spectral index, $\gamma$ = 3.10$^{+0.26}_{-0.22}$, consistent with previous IceCube results. The observation of a neutrino excess from the direction of NGC 4151 is at a post-trial significance of 2.9$\sigma$. If interpreted as an astrophysical signal, the excess observed from NGC 4151 corresponds to a flux $\phi_{\nu_{\mu}+\bar{\nu}_{\mu}}$ = $1.51_{-0.81}^{+0.99} \times 10^{-11}$ TeV$^{-1}$ cm$^{-2}$ s$^{-1}$ normalized at 1 TeV and $\gamma$ = 2.83$^{+0.35}_{-0.28}$.
- Published
- 2024
34. Exploration of mass splitting and muon/tau mixing parameters for an eV-scale sterile neutrino with IceCube
- Author
-
Abbasi, R., Ackermann, M., Adams, J., Agarwalla, S. K., Aguilar, J. A., Ahlers, M., Alameddine, J. M., Amin, N. M., Andeen, K., Argüelles, C., Ashida, Y., Athanasiadou, S., Ausborm, L., Axani, S. N., Bai, X., V., A. Balagopal, Baricevic, M., Barwick, S. W., Bash, S., Basu, V., Bay, R., Beatty, J. J., Tjus, J. Becker, Beise, J., Bellenghi, C., Benning, C., BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Blaufuss, E., Bloom, L., Blot, S., Bontempo, F., Motzkin, J. Y. Book, Meneguolo, C. Boscolo, Böser, S., Botner, O., Böttcher, J., Braun, J., Brinson, B., Brostean-Kaiser, J., Brusa, L., Burley, R. T., Butterfield, D., Campana, M. A., Caracas, I., Carloni, K., Carpio, J., Chattopadhyay, S., Chau, N., Chen, Z., Chirkin, D., Choi, S., Clark, B. A., Coleman, A., Collin, G. H., Connolly, A., Conrad, J. M., Coppin, P., Corley, R., Correa, P., Cowen, D. F., Dave, P., De Clercq, C., DeLaunay, J. J., Delgado, D., Deng, S., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., DeYoung, T., Diaz, A., Díaz-Vélez, J. C., Dierichs, P., Dittmer, M., Domi, A., Draper, L., Dujmovic, H., Dutta, K., DuVernois, M. A., Ehrhardt, T., Eidenschink, L., Eimer, A., Eller, P., Ellinger, E., Mentawi, S. El, Elsässer, D., Engel, R., Erpenbeck, H., Evans, J., Evenson, P. A., Fan, K. L., Fang, K., Farrag, K., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Fukami, S., Fürst, P., Gallagher, J., Ganster, E., Garcia, A., Garcia, M., Garg, G., Genton, E., Gerhardt, L., Ghadimi, A., Girard-Carillo, C., Glaser, C., Glüsenkamp, T., Gonzalez, J. G., Goswami, S., Granados, A., Grant, D., Gray, S. J., Gries, O., Griffin, S., Griswold, S., Groth, K. M., Günther, C., Gutjahr, P., Ha, C., Haack, C., Hallgren, A., Halve, L., Halzen, F., Hamdaoui, H., Minh, M. Ha, Handt, M., Hanson, K., Hardin, J., Harnisch, A. A., Hatch, P., Haungs, A., Häußler, J., Helbing, K., Hellrung, J., Hermannsgabner, J., Heuermann, L., Heyer, N., Hickford, S., Hidvegi, A., Hill, C., Hill, G. C., Hoffman, K. D., Hori, S., Hoshina, K., Hostert, M., Hou, W., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., Ishihara, A., Iwakiri, W., Jacquart, M., Jain, S., Janik, O., Jansson, M., Japaridze, G. S., Jeong, M., Jin, M., Jones, B. J. P., Kamp, N., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katil, A., Katz, U., Kauer, M., Kelley, J. L., Khanal, M., Zathul, A. Khatee, Kheirandish, A., Kiryluk, J., Klein, S. R., Kochocki, A., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Koskinen, D. J., Koundal, P., Kovacevich, M., Kowalski, M., Kozynets, T., Krishnamoorthi, J., Kruiswijk, K., Krupczak, E., Kumar, A., Kun, E., Kurahashi, N., Lad, N., Gualda, C. Lagunas, Lamoureux, M., Larson, M. J., Latseva, S., Lauber, F., Lazar, J. P., Lee, J. W., DeHolton, K. Leonard, Leszczyńska, A., Liao, J., Lincetto, M., Liu, Y. T., Liubarska, M., Love, C., Mariscal, C. J. Lozano, Lu, L., Lucarelli, F., Luszczak, W., Lyu, Y., Madsen, J., Magnus, E., Mahn, K. B. M., Makino, Y., Manao, E., Mancina, S., Sainte, W. Marie, Mariş, I. C., Marka, S., Marka, Z., Marsee, M., Martinez-Soler, I., Maruyama, R., Mayhew, F., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Merckx, Y., Merten, L., Micallef, J., Mitchell, J., Montaruli, T., Moore, R. W., Morii, Y., Morse, R., Moulai, M., Mukherjee, T., Naab, R., Nagai, R., Nakos, M., Naumann, U., Necker, J., Negi, A., Neste, L., Neumann, M., Niederhausen, H., Nisa, M. U., Noda, K., Noell, A., Novikov, A., Pollmann, A. Obertacke, O'Dell, V., Oeyen, B., Olivas, A., Orsoe, R., Osborn, J., O'Sullivan, E., Palusova, V., Pandya, H., Park, N., Parker, G. K., Paudel, E. N., Paul, L., Heros, C. Pérez de los, Pernice, T., Peterson, J., Philippen, S., Pizzuto, A., Plum, M., Pontén, A., Popovych, Y., Rodriguez, M. Prado, Pries, B., Procter-Murphy, R., Przybylski, G. T., Raab, C., Rack-Helleis, J., Ravn, M., Rawlins, K., Rechav, Z., Rehman, A., Reichherzer, P., Resconi, E., Reusch, S., Rhode, W., Riedel, B., Rifaie, A., Roberts, E. J., Robertson, S., Rodan, S., Roellinghoff, G., Rongen, M., Rosted, A., Rott, C., Ruhe, T., Ruohan, L., Ryckbosch, D., Safa, I., Saffer, J., Salazar-Gallegos, D., Sampathkumar, P., Sandrock, A., Santander, M., Sarkar, S., Savelberg, J., Savina, P., Schaile, P., Schaufel, M., Schieler, H., Schindler, S., Schlickmann, L., Schlüter, B., Schlüter, F., Schmeisser, N., Schmidt, T., Schneider, J., Schröder, F. G., Schumacher, L., Sclafani, S., Seckel, D., Seikh, M., Seo, M., Seunarine, S., Myhr, P. Sevle, Shah, R., Shefali, S., Shimizu, N., Silva, M., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Søgaard, A., Soldin, D., Soldin, P., Sommani, G., Spannfellner, C., Spiczak, G. M., Spiering, C., Stamatikos, M., Stanev, T., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Terliuk, A., Thiesmeyer, M., Thompson, W. G., Thwaites, J., Tilav, S., Tollefson, K., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Turcotte, R., Twagirayezu, J. P., Elorrieta, M. A. Unland, Upadhyay, A. K., Upshaw, K., Vaidyanathan, A., Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Vara, J., Varsi, F., Veitch-Michaelis, J., Venugopal, M., Vereecken, M., Verpoest, S., Veske, D., Vijai, A., Walck, C., Wang, A., Weaver, C., Weigel, P., Weindl, A., Weldert, J., Wen, A. Y., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, N., Wiebusch, C. H., Williams, D. R., Witthaus, L., Wolf, A., Wolf, M., Wrede, G., Xu, X. W., Yanez, J. P., Yildizci, E., Yoshida, S., Young, R., Yu, S., Yuan, T., Zhang, Z., Zhelnin, P., Zilberman, P., and Zimmerman, M.
- Subjects
High Energy Physics - Experiment - Abstract
We present the first three-parameter fit to a 3+1 sterile neutrino model using 7.634 years of data from the IceCube Neutrino Observatory on $\nu_\mu+\overline{\nu}_\mu$ charged-current interactions in the energy range 500--9976 GeV. Our analysis is sensitive to the mass-squared splitting between the heaviest and lightest mass state ($\Delta m_{41}^2$), the mixing matrix element connecting muon flavor to the fourth mass state ($|U_{\mu4}|^2$), and the element connecting tau flavor to the fourth mass state ($|U_{\tau4}|^2$). Predicted propagation effects in matter enhance the signature through a resonance as atmospheric neutrinos from the Northern Hemisphere traverse the Earth to the IceCube detector at the South Pole. The remaining sterile neutrino matrix elements are left fixed, with $|U_{e4}|^2= 0$ and $\delta_{14}=0$, as they have a negligible effect, and $\delta_{24}=\pi$ is set to give the most conservative limits. The result is consistent with the no-sterile neutrino hypothesis with a probability of 4.3%. Profiling the likelihood of each parameter yields the 90\% confidence levels: $ 2.4\,\mathrm{eV}^{2} < \Delta m_{41}^2 <9.6\,\mathrm{eV}^{2} $ , $0.0081 < |U_{\mu4}|^2 < 0.10$ , and $|U_{\tau4}|^2< 0.035$, which narrows the allowed parameter-space for $|U_{\tau4}|^2$. However, the primary result of this analysis is the first map of the 3+1 parameter space exploring the interdependence of $\Delta m_{41}^2$, $|U_{\mu4}|^2$, and $|U_{\tau4}|^2$., Comment: 14 pages, 8 figures. Published in PLB
- Published
- 2024
- Full Text
- View/download PDF
35. FAIIR: Building Toward A Conversational AI Agent Assistant for Youth Mental Health Service Provision
- Author
-
Obadinma, Stephen, Lachana, Alia, Norman, Maia, Rankin, Jocelyn, Yu, Joanna, Zhu, Xiaodan, Mastropaolo, Darren, Pandya, Deval, Sultan, Roxana, and Dolatabadi, Elham
- Subjects
Computer Science - Artificial Intelligence - Abstract
The world's healthcare systems and mental health agencies face both a growing demand for youth mental health services, alongside a simultaneous challenge of limited resources. Here, we focus on frontline crisis support, where Crisis Responders (CRs) engage in conversations for youth mental health support and assign an issue tag to each conversation. In this study, we develop FAIIR (Frontline Assistant: Issue Identification and Recommendation), an advanced tool leveraging an ensemble of domain-adapted and fine-tuned transformer models trained on a large conversational dataset comprising 780,000 conversations. The primary aim is to reduce the cognitive burden on CRs, enhance the accuracy of issue identification, and streamline post-conversation administrative tasks. We evaluate FAIIR on both retrospective and prospective conversations, emphasizing human-in-the-loop design with active CR engagement for model refinement, consensus-building, and overall assessment. Our results indicate that FAIIR achieves an average AUCROC of 94%, a sample average F1-score of 64%, and a sample average recall score of 81% on the retrospective test set. We also demonstrate the robustness and generalizability of the FAIIR tool during the silent testing phase, with less than a 2% drop in all performance metrics. Notably, CRs' responses exhibited an overall agreement of 90.9% with FAIIR's predictions. Furthermore, expert agreement with FAIIR surpassed their agreement with the original labels. To conclude, our findings indicate that assisting with the identification of issues of relevance helps reduce the burden on CRs, ensuring that appropriate resources can be provided and that active rescues and mandatory reporting can take place in critical situations requiring immediate de-escalation.
- Published
- 2024
36. Methods and stability tests associated with the sterile neutrino search using improved high-energy $\nu_\mu$ event reconstruction in IceCube
- Author
-
IceCube Collaboration, Abbasi, R., Ackermann, M., Adams, J., Agarwalla, S. K., Aguilar, J. A., Ahlers, M., Alameddine, J. M., Amin, N. M., Andeen, K., Argüelles, C., Ashida, Y., Athanasiadou, S., Ausborm, L., Axani, S. N., Bai, X., V., A. Balagopal, Baricevic, M., Barwick, S. W., Bash, S., Basu, V., Bay, R., Beatty, J. J., Tjus, J. Becker, Beise, J., Bellenghi, C., Benning, C., BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Blaufuss, E., Bloom, L., Blot, S., Bontempo, F., Motzkin, J. Y. Book, Meneguolo, C. Boscolo, Böser, S., Botner, O., Böttcher, J., Braun, J., Brinson, B., Brostean-Kaiser, J., Brusa, L., Burley, R. T., Butterfield, D., Campana, M. A., Caracas, I., Carloni, K., Carpio, J., Chattopadhyay, S., Chau, N., Chen, Z., Chirkin, D., Choi, S., Clark, B. A., Coleman, A., Collin, G. H., Connolly, A., Conrad, J. M., Coppin, P., Corley, R., Correa, P., Cowen, D. F., Dave, P., De Clercq, C., DeLaunay, J. J., Delgado, D., Deng, S., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., Diaz, A., Díaz-Vélez, J. C., Dierichs, P., Dittmer, M., Domi, A., Draper, L., Dujmovic, H., Dutta, K., DuVernois, M. A., Ehrhardt, T., Eidenschink, L., Eimer, A., Eller, P., Ellinger, E., Mentawi, S. El, Elsässer, D., Engel, R., Erpenbeck, H., Evans, J., Evenson, P. A., Fan, K. L., Fang, K., Farrag, K., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Fukami, S., Fürst, P., Gallagher, J., Ganster, E., Garcia, A., Garcia, M., Garg, G., Genton, E., Gerhardt, L., Ghadimi, A., Girard-Carillo, C., Glaser, C., Glüsenkamp, T., Gonzalez, J. G., Goswami, S., Granados, A., Grant, D., Gray, S. J., Gries, O., Griffin, S., Griswold, S., Groth, K. M., Günther, C., Gutjahr, P., Ha, C., Haack, C., Hallgren, A., Halve, L., Halzen, F., Hamdaoui, H., Minh, M. Ha, Handt, M., Hanson, K., Hardin, J., Harnisch, A. A., Hatch, P., Haungs, A., Häußler, J., Helbing, K., Hellrung, J., Hermannsgabner, J., Heuermann, L., Heyer, N., Hickford, S., Hidvegi, A., Hill, C., Hill, G. C., Hoffman, K. D., Hori, S., Hoshina, K., Hostert, M., Hou, W., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., Ishihara, A., Iwakiri, W., Jacquart, M., Janik, O., Jansson, M., Japaridze, G. S., Jeong, M., Jin, M., Jones, B. J. P., Kamp, N., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katil, A., Katz, U., Kauer, M., Kelley, J. L., Khanal, M., Zathul, A. Khatee, Kheirandish, A., Kiryluk, J., Klein, S. R., Kochocki, A., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Koskinen, D. J., Koundal, P., Kovacevich, M., Kowalski, M., Kozynets, T., Krishnamoorthi, J., Kruiswijk, K., Krupczak, E., Kumar, A., Kun, E., Kurahashi, N., Lad, N., Gualda, C. Lagunas, Lamoureux, M., Larson, M. J., Latseva, S., Lauber, F., Lazar, J. P., Lee, J. W., DeHolton, K. Leonard, Leszczyńska, A., Liao, J., Lincetto, M., Liu, Y. T., Liubarska, M., Lohfink, E., Love, C., Mariscal, C. J. Lozano, Lu, L., Lucarelli, F., Luszczak, W., Lyu, Y., Madsen, J., Magnus, E., Mahn, K. B. M., Makino, Y., Manao, E., Mancina, S., Sainte, W. Marie, Mariş, I. C., Marka, S., Marka, Z., Marsee, M., Martinez-Soler, I., Maruyama, R., Mayhew, F., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Merckx, Y., Merten, L., Micallef, J., Mitchell, J., Montaruli, T., Moore, R. W., Morii, Y., Morse, R., Moulai, M., Mukherjee, T., Naab, R., Nagai, R., Nakos, M., Naumann, U., Necker, J., Negi, A., Neste, L., Neumann, M., Niederhausen, H., Nisa, M. U., Noda, K., Noell, A., Novikov, A., Pollmann, A. Obertacke, O'Dell, V., Oeyen, B., Olivas, A., Orsoe, R., Osborn, J., O'Sullivan, E., Pandya, H., Park, N., Parker, G. K., Paudel, E. N., Paul, L., Heros, C. Pérez de los, Pernice, T., Peterson, J., Philippen, S., Pizzuto, A., Plum, M., Pontén, A., Popovych, Y., Rodriguez, M. Prado, Pries, B., Procter-Murphy, R., Przybylski, G. T., Raab, C., Rack-Helleis, J., Ravn, M., Rawlins, K., Rechav, Z., Rehman, A., Reichherzer, P., Resconi, E., Reusch, S., Rhode, W., Riedel, B., Rifaie, A., Roberts, E. J., Robertson, S., Rodan, S., Roellinghoff, G., Rongen, M., Rosted, A., Rott, C., Ruhe, T., Ruohan, L., Ryckbosch, D., Safa, I., Saffer, J., Salazar-Gallegos, D., Sampathkumar, P., Sandrock, A., Santander, M., Sarkar, S., Savelberg, J., Savina, P., Schaile, P., Schaufel, M., Schieler, H., Schindler, S., Schlüter, B., Schlüter, F., Schmeisser, N., Schmidt, T., Schneider, J., Schröder, F. G., Schumacher, L., Sclafani, S., Seckel, D., Seikh, M., Seo, M., Seunarine, S., Myhr, P. Sevle, Shah, R., Shefali, S., Shimizu, N., Silva, M., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Søgaard, A., Soldin, D., Soldin, P., Sommani, G., Spannfellner, C., Spiczak, G. M., Spiering, C., Sponsler, C., Stamatikos, M., Stanev, T., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Terliuk, A., Thiesmeyer, M., Thompson, W. G., Thwaites, J., Tilav, S., Tollefson, K., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Turcotte, R., Twagirayezu, J. P., Elorrieta, M. A. Unland, Upadhyay, A. K., Upshaw, K., Vaidyanathan, A., Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Vara, J., Veitch-Michaelis, J., Venugopal, M., Vereecken, M., Verpoest, S., Veske, D., Vijai, A., Walck, C., Wang, A., Weaver, C., Weigel, P., Weindl, A., Weldert, J., Wen, A. Y., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, N., Wiebusch, C. H., Williams, D. R., Witthaus, L., Wolf, A., Wolf, M., Wrede, G., Xu, X. W., Yanez, J. P., Yildizci, E., Yoshida, S., Young, R., Yu, S., Yuan, T., Zhang, Z., Zhelnin, P., Zilberman, P., and Zimmerman, M.
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
We provide supporting details for the search for a 3+1 sterile neutrino using data collected over eleven years at the IceCube Neutrino Observatory. The analysis uses atmospheric muon-flavored neutrinos from 0.5 to 100\, TeV that traverse the Earth to reach the IceCube detector, and finds a best-fit point at $\sin^2(2\theta_{24}) = 0.16$ and $\Delta m^{2}_{41} = 3.5$ eV$^2$ with a goodness-of-fit p-value of 12\% and consistency with the null hypothesis of no oscillations to sterile neutrinos with a p-value of 3.1\%. Several improvements were made over past analyses, which are reviewed in this article, including upgrades to the reconstruction and the study of sources of systematic uncertainty. We provide details of the fit quality and discuss stability tests that split the data for separate samples, comparing results. We find that the fits are consistent between split data sets., Comment: 19 pages, 19 figures, 2 tables. This long-form paper is a companion to the letter "A search for an eV-scale sterile neutrino using improved high-energy {\nu}{\mu} event reconstruction in IceCube." Matches published version
- Published
- 2024
- Full Text
- View/download PDF
37. A search for an eV-scale sterile neutrino using improved high-energy $\nu_\mu$ event reconstruction in IceCube
- Author
-
IceCube Collaboration, Abbasi, R., Ackermann, M., Adams, J., Agarwalla, S. K., Aguilar, J. A., Ahlers, M., Alameddine, J. M., Amin, N. M., Andeen, K., Argüelles, C., Ashida, Y., Athanasiadou, S., Ausborm, L., Axani, S. N., Bai, X., V., A. Balagopal, Baricevic, M., Barwick, S. W., Bash, S., Basu, V., Bay, R., Beatty, J. J., Tjus, J. Becker, Beise, J., Bellenghi, C., Benning, C., BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Blaufuss, E., Bloom, L., Blot, S., Bontempo, F., Motzkin, J. Y. Book, Meneguolo, C. Boscolo, Böser, S., Botner, O., Böttcher, J., Braun, J., Brinson, B., Brostean-Kaiser, J., Brusa, L., Burley, R. T., Butterfield, D., Campana, M. A., Caracas, I., Carloni, K., Carpio, J., Chattopadhyay, S., Chau, N., Chen, Z., Chirkin, D., Choi, S., Clark, B. A., Coleman, A., Collin, G. H., Connolly, A., Conrad, J. M., Coppin, P., Corley, R., Correa, P., Cowen, D. F., Dave, P., De Clercq, C., DeLaunay, J. J., Delgado, D., Deng, S., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., Diaz, A., Díaz-Vélez, J. C., Dierichs, P., Dittmer, M., Domi, A., Draper, L., Dujmovic, H., Dutta, K., DuVernois, M. A., Ehrhardt, T., Eidenschink, L., Eimer, A., Eller, P., Ellinger, E., Mentawi, S. El, Elsässer, D., Engel, R., Erpenbeck, H., Evans, J., Evenson, P. A., Fan, K. L., Fang, K., Farrag, K., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Fukami, S., Fürst, P., Gallagher, J., Ganster, E., Garcia, A., Garcia, M., Garg, G., Genton, E., Gerhardt, L., Ghadimi, A., Girard-Carillo, C., Glaser, C., Glüsenkamp, T., Gonzalez, J. G., Goswami, S., Granados, A., Grant, D., Gray, S. J., Gries, O., Griffin, S., Griswold, S., Groth, K. M., Günther, C., Gutjahr, P., Ha, C., Haack, C., Hallgren, A., Halve, L., Halzen, F., Hamdaoui, H., Minh, M. Ha, Handt, M., Hanson, K., Hardin, J., Harnisch, A. A., Hatch, P., Haungs, A., Häußler, J., Helbing, K., Hellrung, J., Hermannsgabner, J., Heuermann, L., Heyer, N., Hickford, S., Hidvegi, A., Hill, C., Hill, G. C., Hoffman, K. D., Hori, S., Hoshina, K., Hostert, M., Hou, W., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., Ishihara, A., Iwakiri, W., Jacquart, M., Janik, O., Jansson, M., Japaridze, G. S., Jeong, M., Jin, M., Jones, B. J. P., Kamp, N., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katil, A., Katz, U., Kauer, M., Kelley, J. L., Khanal, M., Zathul, A. Khatee, Kheirandish, A., Kiryluk, J., Klein, S. R., Kochocki, A., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Koskinen, D. J., Koundal, P., Kovacevich, M., Kowalski, M., Kozynets, T., Krishnamoorthi, J., Kruiswijk, K., Krupczak, E., Kumar, A., Kun, E., Kurahashi, N., Lad, N., Gualda, C. Lagunas, Lamoureux, M., Larson, M. J., Latseva, S., Lauber, F., Lazar, J. P., Lee, J. W., DeHolton, K. Leonard, Leszczyńska, A., Liao, J., Lincetto, M., Liu, Y. T., Liubarska, M., Lohfink, E., Love, C., Mariscal, C. J. Lozano, Lu, L., Lucarelli, F., Luszczak, W., Lyu, Y., Madsen, J., Magnus, E., Mahn, K. B. M., Makino, Y., Manao, E., Mancina, S., Sainte, W. Marie, Mariş, I. C., Marka, S., Marka, Z., Marsee, M., Martinez-Soler, I., Maruyama, R., Mayhew, F., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Merckx, Y., Merten, L., Micallef, J., Mitchell, J., Montaruli, T., Moore, R. W., Morii, Y., Morse, R., Moulai, M., Mukherjee, T., Naab, R., Nagai, R., Nakos, M., Naumann, U., Necker, J., Negi, A., Neste, L., Neumann, M., Niederhausen, H., Nisa, M. U., Noda, K., Noell, A., Novikov, A., Pollmann, A. Obertacke, O'Dell, V., Oeyen, B., Olivas, A., Orsoe, R., Osborn, J., O'Sullivan, E., Pandya, H., Park, N., Parker, G. K., Paudel, E. N., Paul, L., Heros, C. Pérez de los, Pernice, T., Peterson, J., Philippen, S., Pizzuto, A., Plum, M., Pontén, A., Popovych, Y., Rodriguez, M. Prado, Pries, B., Procter-Murphy, R., Przybylski, G. T., Raab, C., Rack-Helleis, J., Ravn, M., Rawlins, K., Rechav, Z., Rehman, A., Reichherzer, P., Resconi, E., Reusch, S., Rhode, W., Riedel, B., Rifaie, A., Roberts, E. J., Robertson, S., Rodan, S., Roellinghoff, G., Rongen, M., Rosted, A., Rott, C., Ruhe, T., Ruohan, L., Ryckbosch, D., Safa, I., Saffer, J., Salazar-Gallegos, D., Sampathkumar, P., Sandrock, A., Santander, M., Sarkar, S., Savelberg, J., Savina, P., Schaile, P., Schaufel, M., Schieler, H., Schindler, S., Schlüter, B., Schlüter, F., Schmeisser, N., Schmidt, T., Schneider, J., Schröder, F. G., Schumacher, L., Sclafani, S., Seckel, D., Seikh, M., Seo, M., Seunarine, S., Myhr, P. Sevle, Shah, R., Shefali, S., Shimizu, N., Silva, M., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Søgaard, A., Soldin, D., Soldin, P., Sommani, G., Spannfellner, C., Spiczak, G. M., Spiering, C., Sponsler, C., Stamatikos, M., Stanev, T., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Terliuk, A., Thiesmeyer, M., Thompson, W. G., Thwaites, J., Tilav, S., Tollefson, K., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Turcotte, R., Twagirayezu, J. P., Elorrieta, M. A. Unland, Upadhyay, A. K., Upshaw, K., Vaidyanathan, A., Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Vara, J., Veitch-Michaelis, J., Venugopal, M., Vereecken, M., Verpoest, S., Veske, D., Vijai, A., Walck, C., Wang, A., Weaver, C., Weigel, P., Weindl, A., Weldert, J., Wen, A. Y., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, N., Wiebusch, C. H., Williams, D. R., Witthaus, L., Wolf, A., Wolf, M., Wrede, G., Xu, X. W., Yanez, J. P., Yildizci, E., Yoshida, S., Young, R., Yu, S., Yuan, T., Zhang, Z., Zhelnin, P., Zilberman, P., and Zimmerman, M.
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
This Letter presents the result of a 3+1 sterile neutrino search using 10.7 years of IceCube data. We analyze atmospheric muon neutrinos that traverse the Earth with energies ranging from 0.5 to 100 TeV, incorporating significant improvements in modeling neutrino flux and detector response compared to earlier studies. Notably, for the first time, we categorize data into starting and through-going events, distinguishing neutrino interactions with vertices inside or outside the instrumented volume, to improve energy resolution. The best-fit point for a 3+1 model is found to be at $\sin^2(2\theta_{24}) = 0.16$ and $\Delta m^{2}_{41} = 3.5$ eV$^2$, which agrees with previous iterations of this study. The result is consistent with the null hypothesis of no sterile neutrinos with a p-value of 3.1\%., Comment: 10 pages, 4 figures. This letter is supported by the long-form paper "Methods and stability tests associated with the sterile neutrino search using improved high-energy $\nu_\mu$ event reconstruction in IceCube," also appearing on arXiv. Matches published version
- Published
- 2024
- Full Text
- View/download PDF
38. Search for joint multimessenger signals from potential Galactic PeVatrons with HAWC and IceCube
- Author
-
Alfaro, R., Alvarez, C., Arteaga-Velázquez, J. C., Rojas, D. Avila, Solares, H. A. Ayala, Babu, R., Belmont-Moreno, E., Caballero-Mora, K. S., Capistrán, T., Carramiñana, A., Casanova, S., Cotti, U., Cotzomi, J., de León, S. Coutiño, De la Fuente, E., Depaoli, D., Di Lalla, N., Hernandez, R. Diaz, Díaz-Vélez, J. C., Engel, K., Ergin, T., Fan, K. L., Fang, K., Fraija, N., Fraija, S., García-González, J. A., Garfias, F., González, M. M., Goodman, J. A., Groetsch, S., Harding, J. P., Hernández-Cadena, S., Herzog, I., Huang, D., Hueyotl-Zahuantitla, F., Hüntemeyer, P., Iriarte, A., Kaufmann, S., Lee, J., Vargas, H. León, Longinotti, A. L., Luis-Raya, G., Malone, K., Martínez-Castro, J., Matthews, J. A., Miranda-Romagnoli, P., Montes, J. A., Moreno, E., Mostafá, M., Nellen, L., Omodei, N., Osorio, M., Araujo, Y. Pérez, Pérez-Pérez, E. G., Rho, C. D., Rosa-González, D., Salazar, H., Salazar-Gallegos, D., Sandoval, A., Schneider, M., Serna-Franco, J., Smith, A. J., Son, Y., Tibolla, O., Tollefson, K., Torres, I., Torres-Escobedo, R., Turner, R., Ureña-Mena, F., Wang, X., Watson, I. J., Whitaker, K., Willox, E., Wu, H., Yun-Cárcamo, S., Zhou, H., de León, C., Abbasi, R., Ackermann, M., Adams, J., Agarwalla, S. K., Aguilar, J. A., Ahlers, M., Alameddine, J. M., Amin, N. M., Andeen, K., Argüelles, C., Ashida, Y., Athanasiadou, S., Ausborm, L., Axani, S. N., Bai, X., V., A. Balagopal, Baricevic, M., Barwick, S. W., Bash, S., Basu, V., Bay, R., Beatty, J. J., Tjus, J. Becker, Beise, J., Bellenghi, C., Benning, C., BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Blaufuss, E., Bloom, L., Blot, S., Bontempo, F., Motzkin, J. Y. Book, Meneguolo, C. Boscolo, Böser, S., Botner, O., Böttcher, J., Braun, J., Brinson, B., Brostean-Kaiser, J., Brusa, L., Burley, R. T., Butterfield, D., Campana, M. A., Caracas, I., Carloni, K., Carpio, J., Chattopadhyay, S., Chau, N., Chen, Z., Chirkin, D., Choi, S., Clark, B. A., Coleman, A., Collin, G. H., Connolly, A., Conrad, J. M., Coppin, P., Corley, R., Correa, P., Cowen, D. F., Dave, P., De Clercq, C., DeLaunay, J. J., Delgado, D., Deng, S., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., DeYoung, T., Diaz, A., Dierichs, P., Dittmer, M., Domi, A., Draper, L., Dujmovic, H., Dutta, K., DuVernois, M. A., Ehrhardt, T., Eidenschink, L., Eimer, A., Eller, P., Ellinger, E., Mentawi, S. El, Elsässer, D., Engel, R., Erpenbeck, H., Evans, J., Evenson, P. A., Farrag, K., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Fukami, S., Fürst, P., Gallagher, J., Ganster, E., Garcia, A., Garcia, M., Garg, G., Genton, E., Gerhardt, L., Ghadimi, A., Girard-Carillo, C., Glaser, C., Glüsenkamp, T., Gonzalez, J. G., Goswami, S., Granados, A., Grant, D., Gray, S. J., Gries, O., Griffin, S., Griswold, S., Groth, K. M., Günther, C., Gutjahr, P., Ha, C., Haack, C., Hallgren, A., Halve, L., Halzen, F., Hamdaoui, H., Minh, M. Ha, Handt, M., Hanson, K., Hardin, J., Harnisch, A. A., Hatch, P., Haungs, A., Häußler, J., Helbing, K., Hellrung, J., Hermannsgabner, J., Heuermann, L., Heyer, N., Hickford, S., Hidvegi, A., Hill, C., Hill, G. C., Hoffman, K. D., Hori, S., Hoshina, K., Hostert, M., Hou, W., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., Ishihara, A., Iwakiri, W., Jacquart, M., Janik, O., Jansson, M., Japaridze, G. S., Jeong, M., Jin, M., Jones, B. J. P., Kamp, N., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katil, A., Katz, U., Kauer, M., Kelley, J. L., Khanal, M., Zathul, A. Khatee, Kheirandish, A., Kiryluk, J., Klein, S. R., Kochocki, A., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Koskinen, D. J., Koundal, P., Kovacevich, M., Kowalski, M., Kozynets, T., Krishnamoorthi, J., Kruiswijk, K., Krupczak, E., Kumar, A., Kun, E., Kurahashi, N., Lad, N., Gualda, C. Lagunas, Lamoureux, M., Larson, M. J., Latseva, S., Lauber, F., Lazar, J. P., Lee, J. W., DeHolton, K. Leonard, Leszczyńska, A., Liao, J., Lincetto, M., Liu, Y. T., Liubarska, M., Lohfink, E., Love, C., Mariscal, C. J. Lozano, Lu, L., Lucarelli, F., Luszczak, W., Lyu, Y., Madsen, J., Magnus, E., Mahn, K. B. M., Makino, Y., Manao, E., Mancina, S., Sainte, W. Marie, Mariş, I. C., Marka, S., Marka, Z., Marsee, M., Martinez-Soler, I., Maruyama, R., Mayhew, F., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Merckx, Y., Merten, L., Micallef, J., Mitchell, J., Montaruli, T., Moore, R. W., Morii, Y., Morse, R., Moulai, M., Mukherjee, T., Naab, R., Nagai, R., Nakos, M., Naumann, U., Necker, J., Negi, A., Neste, L., Neumann, M., Niederhausen, H., Noda, K., Noell, A., Novikov, A., Pollmann, A. Obertacke, O'Dell, V., Oeyen, B., Olivas, A., Orsoe, R., Osborn, J., O'Sullivan, E., Pandya, H., Park, N., Parker, G. K., Paudel, E. N., Paul, L., Heros, C. Pérez de los, Pernice, T., Peterson, J., Philippen, S., Pizzuto, A., Plum, M., Pontén, A., Popovych, Y., Rodriguez, M. Prado, Pries, B., Procter-Murphy, R., Przybylski, G. T., Raab, C., Rack-Helleis, J., Ravn, M., Rawlins, K., Rechav, Z., Rehman, A., Reichherzer, P., Resconi, E., Reusch, S., Rhode, W., Riedel, B., Rifaie, A., Roberts, E. J., Robertson, S., Rodan, S., Roellinghoff, G., Rongen, M., Rosted, A., Rott, C., Ruhe, T., Ruohan, L., Ryckbosch, D., Safa, I., Saffer, J., Sampathkumar, P., Sandrock, A., Santander, M., Sarkar, S., Savelberg, J., Savina, P., Schaile, P., Schaufel, M., Schieler, H., Schindler, S., Schlüter, B., Schlüter, F., Schmeisser, N., Schmidt, T., Schneider, J., Schröder, F. G., Schumacher, L., Sclafani, S., Seckel, D., Seikh, M., Seo, M., Seunarine, S., Myhr, P. Sevle, Shah, R., Shefali, S., Shimizu, N., Silva, M., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Søgaard, A., Soldin, D., Soldin, P., Sommani, G., Spannfellner, C., Spiczak, G. M., Spiering, C., Stamatikos, M., Stanev, T., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Terliuk, A., Thiesmeyer, M., Thompson, W. G., Thwaites, J., Tilav, S., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Turcotte, R., Twagirayezu, J. P., Elorrieta, M. A. Unland, Upadhyay, A. K., Upshaw, K., Vaidyanathan, A., Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Vara, J., Veitch-Michaelis, J., Venugopal, M., Vereecken, M., Verpoest, S., Veske, D., Vijai, A., Walck, C., Wang, A., Weaver, C., Weigel, P., Weindl, A., Weldert, J., Wen, A. Y., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, N., Wiebusch, C. H., Williams, D. R., Witthaus, L., Wolf, A., Wolf, M., Wrede, G., Xu, X. W., Yanez, J. P., Yildizci, E., Yoshida, S., Young, R., Yu, S., Yuan, T., Zhang, Z., Zhelnin, P., Zilberman, P., and Zimmerman, M.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Galactic PeVatrons are sources that can accelerate cosmic rays to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding ambient material or radiation, resulting in the production of gamma rays and neutrinos. To optimize for the detection of such associated production of gamma rays and neutrinos for a given source morphology and spectrum, a multi-messenger analysis that combines gamma rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework (3ML) with IceCube Maximum Likelihood Analysis software (i3mla) and HAWC Accelerated Likelihood (HAL) to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 years of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit from the 22 sources. From the neutrino flux limit, we conclude that the gamma-ray emission from five of the sources can not be produced purely from hadronic interactions. We report the limit for the fraction of gamma rays produced by hadronic interactions for these five sources.
- Published
- 2024
39. Acceptance Tests of more than 10 000 Photomultiplier Tubes for the multi-PMT Digital Optical Modules of the IceCube Upgrade
- Author
-
Abbasi, R., Ackermann, M., Adams, J., Agarwalla, S. K., Aguilar, J. A., Ahlers, M., Alameddine, J. M., Amin, N. M., Andeen, K., Argüelles, C., Ashida, Y., Athanasiadou, S., Ausborm, L., Axani, S. N., Bai, X., V., A. Balagopal, Baricevic, M., Barwick, S. W., Bash, S., Basu, V., Bay, R., Beatty, J. J., Tjus, J. Becker, Beise, J., Bellenghi, C., Benning, C., BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Blaufuss, E., Bloom, L., Blot, S., Bontempo, F., Motzkin, J. Y. Book, Meneguolo, C. Boscolo, Böser, S., Botner, O., Böttcher, J., Braun, J., Brinson, B., Brostean-Kaiser, J., Brusa, L., Burley, R. T., Butterfield, D., Campana, M. A., Caracas, I., Carloni, K., Carpio, J., Chattopadhyay, S., Chau, N., Chen, Z., Chirkin, D., Choi, S., Clark, B. A., Coleman, A., Collin, G. H., Connolly, A., Conrad, J. M., Coppin, P., Corley, R., Correa, P., Cowen, D. F., Dave, P., De Clercq, C., DeLaunay, J. J., Delgado, D., Deng, S., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., DeYoung, T., Diaz, A., Díaz-Vélez, J. C., Dierichs, P., Dittmer, M., Domi, A., Draper, L., Dujmovic, H., Dutta, K., DuVernois, M. A., Ehrhardt, T., Eidenschink, L., Eimer, A., Eller, P., Ellinger, E., Mentawi, S. El, Elsässer, D., Engel, R., Erpenbeck, H., Evans, J., Evenson, P. A., Fan, K. L., Fang, K., Farrag, K., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Fukami, S., Fürst, P., Gallagher, J., Ganster, E., Garcia, A., Garcia, M., Garg, G., Genton, E., Gerhardt, L., Ghadimi, A., Girard-Carillo, C., Glaser, C., Glüsenkamp, T., Gonzalez, J. G., Goswami, S., Granados, A., Grant, D., Gray, S. J., Gries, O., Griffin, S., Griswold, S., Groth, K. M., Günther, C., Gutjahr, P., Ha, C., Haack, C., Hallgren, A., Halve, L., Halzen, F., Hamdaoui, H., Minh, M. Ha, Handt, M., Hanson, K., Hardin, J., Harnisch, A. A., Hatch, P., Haungs, A., Häußler, J., Helbing, K., Hellrung, J., Hermannsgabner, J., Heuermann, L., Heyer, N., Hickford, S., Hidvegi, A., Hill, C., Hill, G. C., Hoffman, K. D., Hori, S., Hoshina, K., Hostert, M., Hou, W., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., Ishihara, A., Iwakiri, W., Jacquart, M., Janik, O., Jansson, M., Japaridze, G. S., Jeong, M., Jin, M., Jones, B. J. P., Joppe, R., Kamp, N., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katil, A., Katz, U., Kauer, M., Kelley, J. L., Khanal, M., Zathul, A. Khatee, Kheirandish, A., Kiryluk, J., Kochocki, A., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Koskinen, D. J., Kossatz, M., Koundal, P., Kovacevich, M., Kowalski, M., Kozynets, T., Krishnamoorthi, J., Kruiswijk, K., Krupczak, E., Kumar, A., Kun, E., Kurahashi, N., Lad, N., Gualda, C. Lagunas, Lamoureux, M., Larson, M. J., Latseva, S., Lauber, F., Lazar, J. P., Lee, J. W., DeHolton, K. Leonard, Leszczyńska, A., Liao, J., Lincetto, M., Liu, Y. T., Liubarska, M., Lohfink, E., Love, C., Mariscal, C. J. Lozano, Lu, L., Lucarelli, F., Luszczak, W., Lyu, Y., Madsen, J., Magnus, E., Mahn, K. B. M., Makino, Y., Manao, E., Mancina, S., Sainte, W. Marie, Mariş, I. C., Marka, S., Marka, Z., Marsee, M., Martinez-Soler, I., Maruyama, R., Mayhew, F., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Merckx, Y., Merten, L., Micallef, J., Mitchell, J., Montaruli, T., Moore, R. W., Morii, Y., Morse, R., Moulai, M., Mukherjee, T., Naab, R., Nagai, R., Nakos, M., Naumann, U., Necker, J., Negi, A., Neste, L., Neumann, M., Niederhausen, H., Nisa, M. U., Noda, K., Noell, A., Novikov, A., Pollmann, A. Obertacke, O'Dell, V., Oeyen, B., Olivas, A., Orsoe, R., Osborn, J., O'Sullivan, E., Pandya, H., Park, N., Parker, G. K., Paudel, E. N., Paul, L., Heros, C. Pérez de los, Pernice, T., Peterson, J., Philippen, S., Pizzuto, A., Plum, M., Pontén, A., Popovych, Y., Rodriguez, M. Prado, Pries, B., Procter-Murphy, R., Przybylski, G. T., Raab, C., Rack-Helleis, J., Ravn, M., Rawlins, K., Rechav, Z., Rehman, A., Reichherzer, P., Resconi, E., Reusch, S., Rhode, W., Riedel, B., Rifaie, A., Roberts, E. J., Robertson, S., Rodan, S., Roellinghoff, G., Rongen, M., Rosted, A., Rott, C., Ruhe, T., Ruohan, L., Ryckbosch, D., Safa, I., Saffer, J., Salazar-Gallegos, D., Sampathkumar, P., Sandrock, A., Santander, M., Sarkar, S., Savelberg, J., Savina, P., Schaile, P., Schaufel, M., Schieler, H., Schindler, S., Schlüter, B., Schlüter, F., Schmeisser, N., Schmidt, T., Schneider, J., Schröder, F. G., Schumacher, L., Sclafani, S., Seckel, D., Seikh, M., Seo, M., Seunarine, S., Myhr, P. Sevle, Shah, R., Shefali, S., Shimizu, N., Silva, M., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Søgaard, A., Soldin, D., Soldin, P., Sommani, G., Spannfellner, C., Spiczak, G. M., Spiering, C., Stamatikos, M., Stanev, T., Stezelberger, T., Stürwald, T., Stuttard, T., Sulanke, K. H., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Terliuk, A., Thiesmeyer, M., Thompson, W. G., Thwaites, J., Tilav, S., Tollefson, K., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Turcotte, R., Twagirayezu, J. P., Elorrieta, M. A. Unland, Upadhyay, A. K., Upshaw, K., Vaidyanathan, A., Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Vara, J., Veitch-Michaelis, J., Venugopal, M., Vereecken, M., Verpoest, S., Veske, D., Vijai, A., Walck, C., Wang, A., Weaver, C., Weigel, P., Weindl, A., Weldert, J., Wen, A. Y., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, N., Wiebusch, C. H., Williams, D. R., Witthaus, L., Wolf, A., Wolf, M., Wrede, G., Xu, X. W., Yanez, J. P., Yildizci, E., Yoshida, S., Young, R., Yu, S., Yuan, T., Zhang, Z., Zhelnin, P., Zilberman, P., and Zimmerman, M.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
More than 10,000 photomultiplier tubes (PMTs) with a diameter of 80 mm will be installed in multi-PMT Digital Optical Modules (mDOMs) of the IceCube Upgrade. These have been tested and pre-calibrated at two sites. A throughput of more than 1000 PMTs per week with both sites was achieved with a modular design of the testing facilities and highly automated testing procedures. The testing facilities can easily be adapted to other PMTs, such that they can, e.g., be re-used for testing the PMTs for IceCube-Gen2. Single photoelectron response, high voltage dependence, time resolution, prepulse, late pulse, afterpulse probabilities, and dark rates were measured for each PMT. We describe the design of the testing facilities, the testing procedures, and the results of the acceptance tests., Comment: 24 pages, 19 figures, 2 tables, submitted to JINST
- Published
- 2024
40. Decay $B_c^+ \to D_{(s)}^{(*)+} \ell^+\ell^-$ within covariant confined quark model
- Author
-
Ivanov, Mikhail A., Pandya, Jignesh N., Santorelli, Pietro, and Soni, Nakul R.
- Subjects
High Energy Physics - Phenomenology - Abstract
We study the rare semileptonic decays of $B_c$ mesons within the effective field theoretical framework of covariant confined quark model. The transition form factors corresponding to $B_c^+ \to D^{(*)+}$ and $B_c^+ \to D_s^{(*)+}$ are computed in the entire $q^2$ range. Using form factors, we compute the branching fractions and compare them with the available theoretical results. We also compute various physical observables such as forward-backward asymmetry, longitudinal and transverse polarizations as well as clean angular observables.
- Published
- 2024
- Full Text
- View/download PDF
41. Learning Galaxy Intrinsic Alignment Correlations
- Author
-
Pandya, Sneh, Yang, Yuanyuan, Van Alfen, Nicholas, Blazek, Jonathan, and Walters, Robin
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Computer Science - Machine Learning - Abstract
The intrinsic alignments (IA) of galaxies, regarded as a contaminant in weak lensing analyses, represents the correlation of galaxy shapes due to gravitational tidal interactions and galaxy formation processes. As such, understanding IA is paramount for accurate cosmological inferences from weak lensing surveys; however, one limitation to our understanding and mitigation of IA is expensive simulation-based modeling. In this work, we present a deep learning approach to emulate galaxy position-position ($\xi$), position-orientation ($\omega$), and orientation-orientation ($\eta$) correlation function measurements and uncertainties from halo occupation distribution-based mock galaxy catalogs. We find strong Pearson correlation values with the model across all three correlation functions and further predict aleatoric uncertainties through a mean-variance estimation training procedure. $\xi(r)$ predictions are generally accurate to $\leq10\%$. Our model also successfully captures the underlying signal of the noisier correlations $\omega(r)$ and $\eta(r)$, although with a lower average accuracy. We find that the model performance is inhibited by the stochasticity of the data, and will benefit from correlations averaged over multiple data realizations. Our code will be made open source upon journal publication., Comment: 15 pages, 6 figures, 1 table. Accepted at the Data-centric Machine Learning Research (DMLR) Workshop at ICLR 2024
- Published
- 2024
42. Interactive Prompt Debugging with Sequence Salience
- Author
-
Tenney, Ian, Mullins, Ryan, Du, Bin, Pandya, Shree, Kahng, Minsuk, and Dixon, Lucas
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Human-Computer Interaction ,Computer Science - Machine Learning - Abstract
We present Sequence Salience, a visual tool for interactive prompt debugging with input salience methods. Sequence Salience builds on widely used salience methods for text classification and single-token prediction, and extends this to a system tailored for debugging complex LLM prompts. Our system is well-suited for long texts, and expands on previous work by 1) providing controllable aggregation of token-level salience to the word, sentence, or paragraph level, making salience over long inputs tractable; and 2) supporting rapid iteration where practitioners can act on salience results, refine prompts, and run salience on the new output. We include case studies showing how Sequence Salience can help practitioners work with several complex prompting strategies, including few-shot, chain-of-thought, and constitutional principles. Sequence Salience is built on the Learning Interpretability Tool, an open-source platform for ML model visualizations, and code, notebooks, and tutorials are available at http://goo.gle/sequence-salience.
- Published
- 2024
43. On Naisargik Images of Varshamov-Tenengolts and Helberg Codes
- Author
-
Pandya, Kalp, Shetranjiwala, Devdeep, Savaliya, Naisargi, and Gupta, Manish K.
- Subjects
Computer Science - Information Theory ,Computer Science - Emerging Technologies ,Mathematics - Combinatorics - Abstract
The VT and Helberg codes, both in binary and non-binary forms, stand as elegant solutions for rectifying insertion and deletion errors. In this paper we consider the quaternary versions of these codes. It is well known that many optimal binary non-linear codes like Kerdock and Prepreta can be depicted as Gray images (isometry) of codes defined over $\mathbb{Z}_4$. Thus a natural question arises: Can we find similar maps between quaternary and binary spaces which gives interesting properties when applied to the VT and Helberg codes. We found several such maps called Naisargik (natural) maps and we study the images of quaternary VT and Helberg codes under these maps. Naisargik and inverse Naisargik images gives interesting error-correcting properties for VT and Helberg codes. If two Naisargik images of VT code generates an intersecting one deletion sphere, then the images holds the same weights. A quaternary Helberg code designed to correct $s$ deletions can effectively rectify $s+1$ deletion errors when considering its Naisargik image, and $s$-deletion correcting binary Helberg code can corrects $\lfloor\frac{s}{2}\rfloor$ errors with inverse Naisargik image., Comment: 20 pages, 18 Tables, draft, data is at https://github.com/guptalab/GrayVT
- Published
- 2024
44. Application of Fuzzy Factor Comparison Method for Evaluation of Key Performance Indicators Affecting Air Quality in India: A Decision Matrix Approach for Mitigating Anthropogenic Pollution Sources
- Author
-
Pandya, Janki, Sarkar, Debasis, and Kaul, Daya Shankar
- Published
- 2024
- Full Text
- View/download PDF
45. A cooperative strategy-based differential evolution algorithm for robust PEM fuel cell parameter estimation
- Author
-
Jangir, Pradeep, Arpita, Agrawal, Sunilkumar P., Pandya, Sundaram B., Parmar, Anil, Kumar, Sumit, Tejani, Ghanshyam G., and Abualigah, Laith
- Published
- 2024
- Full Text
- View/download PDF
46. Alkali and alkaline earth metals cation effects on the formation of akageneite in corrosion products of steel artifacts embedded in soil: a study under simulated laboratory conditions
- Author
-
Pandya, Achal, Singh, Jitendra Kumar, Yang, Hyun-Min, and Singh, D. D. N.
- Published
- 2024
- Full Text
- View/download PDF
47. Potent combination benefit of the AKT inhibitor capivasertib and the BCL-2 inhibitor venetoclax in diffuse large B cell lymphoma
- Author
-
Willis, Brandon S., Mongeon, Kevin, Dry, Hannah, Neveras, India L., Bryan, Nadezda, Pandya, Meghana, Roderick-Richardson, Justine, Xu, Wendan, Yang, Li, Rosen, Alan, Reimer, Corinne, Tuskova, Liliana, Klener, Pavel, Mettetal, Jerome T., Lenz, Georg, and Barry, Simon T.
- Published
- 2024
- Full Text
- View/download PDF
48. AEVBComm: an intelligent communication system based on β-VAE
- Author
-
Hemadri, Raghu Vamshi, Rayaluru, Akshay, Pandya, Rahul Jashvantbhai, and Iyer, Sridhar
- Published
- 2024
- Full Text
- View/download PDF
49. On the Role of Shim Material to Reduce Chatter in CNC Turning
- Author
-
Patel, Jaimin and Pandya, D. H.
- Published
- 2024
- Full Text
- View/download PDF
50. Many-Objective Multi-Verse Optimizer (MaOMVO): A Novel Algorithm for Solving Complex Many-Objective Engineering Problems
- Author
-
Kalita, Kanak, Jangir, Pradeep, Pandya, Sundaram B., Shanmugasundar, G., Chohan, Jasgurpreet Singh, and Abualigah, Laith
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.