18 results on '"Kuzmanović, Ivana"'
Search Results
2. Optimization of the solution of the parameter-dependent Sylvester equation and applications
- Author
-
Kuzmanović, Ivana and Truhar, Ninoslav
- Published
- 2013
- Full Text
- View/download PDF
3. Optimization of material with modal damping
- Author
-
Kuzmanović, Ivana, Tomljanović, Zoran, and Truhar, Ninoslav
- Published
- 2012
- Full Text
- View/download PDF
4. Universal M-Valued logic
- Author
-
Žilić, Tihomir, Essert, Mario, Benić, Juraj, and Kuzmanović Ivana
- Subjects
M-system theory, multi-valued logic ,Computer Science::Logic in Computer Science - Abstract
This paper based on M-theory wants to show the correlation of Cartesian product of elements of ordered set with a basic, multi-value logic. Using simple algorithms discovered by M. Sare in the natural laws of electrical networks, it is possible to construct logical tables, i.e. grids, for all logic functions of n variables.
- Published
- 2018
5. Theory of M-system
- Author
-
Essert, Mario, primary, Kuzmanović, Ivana, additional, Vazler, Ivan, additional, and Žilić, Tihomir, additional
- Published
- 2017
- Full Text
- View/download PDF
6. Applications of Lyapunov and T-Lyapunov equations in mechanics
- Author
-
Kuzmanović, Ivana, Truhar, Ninoslav, and Tomljanović, Zoran
- Subjects
Nonlinear Sciences::Chaotic Dynamics ,Mathematics::Dynamical Systems ,Computer Science::Systems and Control ,Lyapunov equation ,T- Lyapunov equation ,damping optimization - Abstract
This paper considers Lyapunov and T-Lyapunov matrix equations. Lyapunov equation is a matrix equation of the form AX + XA^T = E which plays a vital role in a number of applications, while T-Lyapunov equation is a matrix equation of the form AX +X^TA^T = E. In this paper the relation between these equations will be exploit with purpose of applying obtained results in problems regarding damping optimization in mechanical systems.
- Published
- 2014
7. Optimizacija rješenja parametarski ovisne Sylvesterove jednadžbe i primjene
- Author
-
Kuzmanović, Ivana
- Subjects
strukturirana Sylvesterovav jednadžba ,strukturirana T-Sylvesterova jednadžba ,optimalni parametri za modalno prigušenje - Abstract
U ovoj disertaciji promatra se problem rješavanja i optimizacije rješenja strukturiranih Sylvesterovih (odnosno Ljapunovljevih) i $T$-Sylvesterovih matričnih jednadžbi, s posebnim naglaskom na parametarski ovisne Sylvesterove, odnosno $T$-Sylvesterove jednadžbe. U radnji je pokazano da korištenje strukture može značajno doprinijeti ubrzanju procesa rješavanja Sylvesterove i $T$-Sylvesterove jednadžbe, a osobito specijalno povezanih nizova jednadžbi koji se javljaju primjerice u procesu optimizacije rješenja parametarski ovisne Sylvesterove, odnosno $T$-Sylvesterove jednadžbe. Zbog odgovarajuće strukture, u radnji se proučavaju Sylvesterove jednadžbe kod kojih su pripadne matrice zbroj jednostavnih matrica (primjerice dijagonalnih ili blok dijagonalnih) s matricama maloga ranga, odnosno jednadžbe oblika \[(A_0+U_1V_1)X+X(B_0+U_2V_2)=E, \] pri čemu su $A_0, B_0$ jednostavne matrice, a $U_1, V_1, U_2, V_2$ matrice malog ranga $r$. Primjenom standardne Sherman-Morrison-Woodbury-eve formule moguće je dobiti takozvanu Sherman-Morrison-Woodbury-evu formulu za rješenje prethodne jednadžbe, što omogućava razvijanje algoritma koji koristeći strukturu rješava jednadžbu tog oblika znatno efikasnije od standardnih algoritama. Algoritam baziran na Sherman-Morrison-Woodbury-evoj formuli osobito je efikasan za računanje rješenja parametarski ovisne Sylvesterove jednadžbe \[(A_0-vU_1V_1)X(v)+X(v)(B_0-vU_2V_2)=E\] za više vrijednosti parametra $v$. Dok je za standardne metode potrebno $\mathcal{; ; O}; ; (n^3)$ elementarnih operacija za svaku vrijednost parametra $v$, metoda bazirana na Sherman-Morrison-Woodbury-evoj formuli treba $\mathcal{; ; O}; ; (rkn^2)$, gdje je $r, k\ll n$ operacija za prvu vrijednost od $v$, dok svako sljedeće rješavanje s drugom vrijednosti od $v$ iziskuje samo $\mathcal{; ; O}; ; (rn^2)$ operacija, gdje je $k$ dimenzija pripadnog Krylovljevog potprostora. Osim toga, ovim pristupom moguće je i derivacije od $X(v)$ računati u $\mathcal{; ; O}; ; (rn^2)$ elementarnih operacija, što omogućava također efikasnu optimizaciju rješenja $X(v)$ s obzirom na parametar $v$. Specijalan slučaj, parametarski ovisna Ljapunovljeva jednadžba oblika \[(A_0-vUU^T)X(v)+X(v)(A_0-vUU^T)^T=E\] javlja se pri računanju i optimizaciji viskoznosti prigušivača mehaničkih sustava s obzirom na kriterij minimizacije usrednjene jedinične ukupne energije. Opisani problemi proučavaju se u poglavljima 3 i 4. Slično kao u slučaju Sylvesterove jednadžbe, Sherman-Morrisonov-Woodbury-evu formulu moguće je primjeniti i na $T$-Sylvesterovu jednadžbu oblika \[(A_0+U_1V_1)X+X^T(B_0+U_2V_2)=E, \] pri čemu su $A_0, B_0$ jednostavne matrice, a $U_1, V_1, U_2, V_2$ matrice malog ranga. Dobivena formula omogućava konstrukciju efikasnog algoritma za rješavanje prethodne $T$-Sylvesterove jednadžbe, kao i rješavanje i optimizaciju rješenja parametarski ovisne $T$-Sylvesterove jednadžbe. Sherman-Morrison-Woodbury-eva formula za $T$-Sylvesterovu jednadžbu promatra se u 5. poglavlju. Već spomenuti problem optimizacije prigušenja mehaničkih sustava usko je vezan za Ljapunovljevu jednadžbu. U posljednjem poglavlju proučava se optimalno modalno prigušenje $D$ dinamičkog sustava opisanog jednadžbom $M\ddot{; ; x}; ; + D\dot{; ; x}; ; + Kx = 0$ koje će za dane matrice mase $M$ i krutosti $K$ osigurati najbolje (s obzirom na neki kriterij) iščezavanje gibanja sustava u vremenu. Kao optimizacijski kriteriji za ovaj problem koriste se kriteriji minimalnog traga, minimalne spektralne norme i minimalne Frobeniusove norme rješenja sustavu pripadne Ljapunovljeve jednadžbe. Izvedeni su optimalni parametri za specijalne tipove modalnog prigušenja, kao što su prigušenje proporcionalno masi, prigušenje proporcionalno krutosti, Rayleigh-evo prigušenje i dr. Traženi optimalni parametri dobiveni su optimizacijom rješenja pripadne parametarski ovisne Ljapunovljeve jednadžbe obzirom na navedene kriterije optimalnosti i dani su u poglavlju 6.
- Published
- 2012
8. Razni načini zadavanja ravnine u prostoru
- Author
-
Corn, Petra and Kuzmanović, Ivana
- Subjects
ravnina ,jednadžba ravnine ,zadavanje ravnine - Abstract
Ravnina u prostoru može se jednoznacno odrediti pomocu normale na nju i jedne tocke koja joj pripada. U ovom clanku bit ce pokazano jednoznacno zadavanje ravnine pomocu tocaka i vektora u njoj, što se u konacnici može svesti na zadavanje tockom i normalom.
- Published
- 2012
9. Najbolja $l_\infty$ aproksimacija rješenja sustava linearnih jednadžbi s jednom nepoznanicom
- Author
-
Kuzmanović, Ivana
- Subjects
preodređen sustav linearnih jednadžbi ,sustav linearnih jednadžbi s jednom nepoznanicom ,Čebiševljeva aproksimacija ,$l_\infty$ aproksimacija - Abstract
U radu se promatra karakterizacija i metode određivanja najbolje $l_\infty$ aproksimacije rješenja sustava linearnih jednadžbi s jednom nepoznanicom.
- Published
- 2011
10. The least absolute deviation linear regression: properties and two efficient methods
- Author
-
Kuzmanović, Ivana, Sabo, Kristian, Scitovski, Rudolf, Vazler, Ivan, and Kováčová Monika
- Subjects
least absolute deviation line ,least absolute deviation plane ,linear regression - Abstract
For the given set of data, among which outliers(wild points) are expected, the problem of determining the best Least Absolute Deviations (LAD) linear regression is considered. Particulary, the problem of determinig the best weighted LAD-line and the best LAD-plane is considered and efficient algorithms for solving these problems are given. Algorithms are illustrated by several examples as well compared with other methods known in literature. The proposed methods proved to be sufficently efficient for being considered as giving a solution in real time. Therefore, they are suitable for various applications, as e.g. in robotics.
- Published
- 2009
11. Neke primjene funkcija pod i strop
- Author
-
Kuzmanović, Ivana
- Subjects
cjelobrojne funkcije ,funkcije pod i strop - Abstract
U radu su navedena neka svojstva funkcija pod i strop, te je ilustrirana njihova primjena.
- Published
- 2008
12. The best least absolute deviation hyperplane - properties and efficient methods
- Author
-
Scitovski, Rudolf, Sabo, Kristian, Kuzmanović, Ivana, Vazler, Ivan, Cupec, Robert, and Grbić, Ratko
- Subjects
least absolute deviations ,LAD ,l1-norm approximation ,weighted median problem - Abstract
For the given set of data-points, the problems of determining the best Least Absolute Deviations (LAD) line in the plane, and the best LAD-plane in the space are considered. This problem could be naturally extended to determination of the best LAD hyperplane. Such problems naturally appear in various applied researches, such as robotics. Thereby, the given set of data-points could be extremely great (about 100, 000), and among the data a significant number of outliers (wild points) might occur. It is a motivation for application of the l1 norm for parameter estimation. It is generally agreed that this principle was proposed by the Croatian mathematician J. R. Bošković in the mid-eighteenth century.
- Published
- 2008
13. Udaljenost točke do krivulje
- Author
-
Kuzmanović, Ivana
- Subjects
udaljenost ,krivulja ,minimizacija - Abstract
U ovom članku razmatra se metoda računanja udaljenosti točke do eksplicitno, parametarski, te polarno zadane krivulje. U literaturi za ovaj problem postoji eksplicitno rješenje za slučaj afine funkcije, te za još neke specijalne slučajeve.
- Published
- 2005
14. Jedna metoda procjene parametara u smislu minimizacije sume L_p ortogonalnih udaljenosti
- Author
-
Kuzmanović Ivana and Scitovski Rudolf
- Subjects
procjena parametara ,ortogonalna regresija - Abstract
Points T_i(x_i, y_i), \, i=1, ..., m, are given in the plane. Optimal parameters b, c of a nonlinear function-model x\mapsto f(x ; b, c) should be estimated, such that the sum of orthogonal distances L_p (p>= 1) from points T_i, \, i=1, ..., m, to the graph of function f is minimal, i.e. function F(b, c)=\sum\limits_{i=1}^m d_p(T(x_\pi, f(x_\pi ; b, c)), T_i), should be minimized, where x_\pi=\arg \min\limits_xd_p(T(x, f(x ; b, c)), T_i). The problem will be considered for the linear, the exponential and the logistic function, respectively, for the most important cases: p=1, 2, \infty. If (x_i, y_i), \, i=1, ..., m, are considered to be some experimental or empirical data, then we deal here with the estimation of parameters of a generally nonlinear function in the sense of L_p orthogonal deviations, which is widely used in applied research. Since the problem in question is the problem of nondifferentiable minimization of nonlinear function F, it will be solved by using the Nelder-Mead Downhill Simplex Method, and for the calculation of L_p distances from points T_i to the graph of function f the method of one-dimensional minimization will be used, which will be elaborated in the paper by I.Soldo and K.Sabo, that will be also presented at this conference. All programs and subprograms will be done by using the {\em Mathematica} software system. We will thereby use graphic options and animation of the iterative process. Software that will be created for this purpose can be used for designing illustrative examples used in the teaching procress, but also for practical applications in various fields, such as agriculture, medicine, economics, biology, etc.
- Published
- 2003
15. Sherman–Morrison–Woodbury formula for Sylvester andT-Sylvester equations with applications
- Author
-
Kuzmanović, Ivana, primary and Truhar, Ninoslav, additional
- Published
- 2013
- Full Text
- View/download PDF
16. Sherman–Morrison–Woodbury formula for Sylvester and T -Sylvester equations with applications.
- Author
-
Kuzmanović, Ivana and Truhar, Ninoslav
- Subjects
- *
SHERMAN-Morrison-Woodbury formula , *NUMERICAL solutions to equations , *MATRICES (Mathematics) , *NUMERICAL calculations , *NUMERICAL analysis , *MATHEMATICAL analysis , *OPERATOR theory - Abstract
In this paper, we present the Sherman–Morrison–Woodbury-type formula for the solution of the Sylvester equation of the formas well as for the solution of theT-Sylvester equation of the formwhereU1,U2,V1,V2are low-rank matrices. Although the matrix version of this formula for the Sylvester equation has been used in several different applications (but not for the case of aT-Sylvester equation), we present a novel approach using a proper operator representation. This novel approach allows us to derive a matrix version of the Sherman–Morrison–Woodbury-type formula for the Sylvester equation as well as for theT-Sylvester equation which seems to be new. We also present algorithms for the efficient calculation of the solution of structured Sylvester andT-Sylvester equations by using these formulas and illustrate their application in several examples. [ABSTRACT FROM PUBLISHER]
- Published
- 2013
- Full Text
- View/download PDF
17. NEW DOCTORAL DEGREES IN THE DEPARTMENT OF MATHEMATICS UNIVERSITY OF OSIJEK.
- Author
-
KUZMANOVIĆ, IVANA
- Subjects
- *
SYLVESTER matrix equations , *LYAPUNOV functions , *MATHEMATICAL optimization , *MATRICES (Mathematics) , *KRYLOV subspace - Abstract
In dissertation the problem of solving and optimizing the solution of structured Sylvester (i.e. Lyapunov) and T-Sylvester matrix equations is considered, with special focus on the parameter dependent Sylvester and T-Sylvester equations. It has been shown that the use of a structure can significantly contribute to acceleration of the process of solving the Sylvester as well as the T-Sylvester equation, and especially some related sequences of equations that arise e.g. in the process of optimization of the solution of parameter-dependent Sylvester and T-Sylvester equations. Due to the appropriate structure, Sylvester equations in which matrices are the sum of simple matrices (e.g. diagonal or block-diagonal) with small-rank matrices are considered in dissertation, i.e. Sylvester equations of the form (A0 + U1V1)X + X(B0 + U2V2) = E; where A0,B0 are simple matrices and U1; V1;U2; V2 are matrices with a low rank r. By using the standard Sherman-Morrison-Woodbury formula it is possible to obtain the so-called Sherman-Morrison-Woodbury formula for the solution of the previous equation. The obtained formula can be used for the construction of an algorithm that solves the equation of the given form much more efficiently than standard algorithms. An algorithm based on the Sherman-Morrison-Woodbury formula is especially efficient for computing the solution of the parameter dependent Sylvester equation (A0 - vU1V1)X(v) + X(v)(B0 - vU2V2) = E for many different values of parameter v. While the standard methods need O(n3) elementary operations for each different value of parameter v, the method based on the Sherman-Morrison-Woodbury formula has complexity O(rkn2), where r; k ⪡ n for the first value of v, while each of the following solving processes with the other value of v needs only O(rn2) operations, where k is the dimension of the corresponding Krylov subspace. In addition, this approach also allows computation of derivatives of X(v) in O(rn2) elementary operations, which enables efficient optimization of the solution X(v) with respect to parameter v. A special case, a parameter-dependent Lyapunov equation of the form (A0 - vUUT )X(v) + X(v)(A0 - vUUT )T = E; occurs during calculation and optimization of dampers' viscosity in mechanical systems with respect to the criterion of minimizing the average total unit energy. Similarly to the case of the Sylvester equation, the Sherman-Morrison-Woodbury formula can be applied to the T-Sylvester equation of the form (A0 + U1V1)X + XT (B0 + U2V2) = E; where A0;B0 are simple matrices and U1; V1;U2; V2 are matrices with a low rank r. The obtained formula is used for the construction of an efficient algorithm for solving the aforementioned T-Sylvester equation, as well as for solving and optimizing the solution of the parameter-dependent T-Sylvester equation. The aforementioned problem of optimizing dampers' viscosity in mechanical systems is closely related to the Lyapunov equation. The last part of dissertation considers optimal modal damping of dynamical system described by equation Mx+Dx+Kx = 0 which will for given mass and stiffness matrices M and K ensure the best (with respect to some criterion) evanescence of the oscillations of the system in time. Criteria of minimum trace, minimum spectral norm and minimum Frobenius norm of the solution of system's corresponding Lyapunov equation are used as optimization criteria for this problem and optimal parameters for some special types of modal damping, such as mass proportional damping, stiffness proportional damping, Rayleigh damping, etc. are derived. [ABSTRACT FROM AUTHOR]
- Published
- 2012
18. Črnkov zapis iz Državnog Arhiva u Beču o obrani Sigeta od Turaka i pogibiji Nikole Zrinskog 1566. g
- Author
-
Mance, Ivan, Žubrinić, Darko, and Kuzmanović, Ivana
- Subjects
Franjo Črnko, Nikola Zrinski, Siget, hrvatska glagoljica, Heinrich Auersperg - Abstract
Znameniti zapis Ferenca (Franje) Črnka, sačuvan u prijepisu anonimnog hrvatskog glagoljaša na ozaljskom području, pisan brzopisnom glagoljicom 1566. ili 1567. g., sadržava točno 40 stranica. Čuva se u Državnom arhivu u Beču u privatnoj zbirci obitelji Heinricha Auersperga. Do sada su objavljene samo dvije stranice izvornika, u poznatoj studiji Stjepana Ivšića iz 1918. g. Tekst zapisa je pisan mješavinom triju temeljnih hrvatskih narječja -čakavskog, kajkavskog i štokavskog govora, s povremenim natruhama iz mađarskog, njemačkog, turskog i talijanskog jezika. Tijekom predavanja bit će po prvi puta prikazano svih četrdeset stranica ovog iznimno važnog jezičnog i povijesnog dokumenta, koji su 2019. g. nabavili Ivan Mance i Darko Žubrinić. Radi se o spisu visoke međunarodne vrijednosti, od interesa za poznavanje povijesti ne samo Europe (osobito Hrvatske, Mađarske i Austrije), nego i Turske.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.