1. A refined Weissman estimator for extreme quantiles
- Author
-
Michaël Allouche, Jonathan El Methni, Stéphane Girard, Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Modèles statistiques bayésiens et des valeurs extrêmes pour données structurées et de grande dimension (STATIFY), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Chaire Stress Test - BNP Paribas/Ecole polytechnique/Fondation de l'X., ANR-15-IDEX-0002,UGA,IDEX UGA(2015), Girard, Stephane, IDEX UGA - - UGA2015 - ANR-15-IDEX-0002 - IDEX - VALID, and El Methni, Jonathan
- Subjects
Statistics and Probability ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Economics, Econometrics and Finance (miscellaneous) ,[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] ,Engineering (miscellaneous) ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Weissman extrapolation methodology for estimating extreme quantiles from heavy-tailed distributions is based on two estimators: an order statistic to estimate an intermediate quantile and an estimator of the tail-index. The common practice is to select the same intermediate sequence for both estimators. In this work, we show how an adapted choice of two different intermediate sequences leads to a reduction of the asymptotic bias associated with the resulting refined Weissman estimator. The asymptotic normality of the latter estimator is established and a data-driven method is introduced for the practical selection of the intermediate sequences. Our approach is compared to Weissman estimator and to six bias reduced estimators of extreme quantiles on a large scale simulation study. It appears that the refined Weissman estimator outperforms its competitors in a wide variety of situations, especially in the challenging high bias cases. Finally, an illustration on an actuarial real data set is provided.
- Published
- 2022