1. Enantiodivergent Sulfoxidation Catalyzed by a Photoswitchable Iron Salen Phosphate Complex
- Author
-
Pieter J. Gilissen, Xiaofei Chen, Joep De Graaf, Paul Tinnemans, Ben L. Feringa, Johannes A. A. W. Elemans, Roeland J. M. Nolte, Stratingh Institute of Chemistry, and Synthetic Organic Chemistry
- Subjects
Hammett plot ,Organic Chemistry ,Spectroscopy and Catalysis ,asymmetric catalysis ,photoresponsive ,Solid State Chemistry ,General Chemistry ,Physical Organic Chemistry ,Catalysis ,sulfoxidation ,supramolecular chemistry - Abstract
Here we describe a photoswitchable iron(III) salen phosphate catalyst, which is able to catalyze the enantiodivergent oxidation of prochiral aryl alkyl sulfides to chiral aryl alkyl sulfoxides. The stable (S)-axial isomer of the catalyst produced enantioenriched sulfoxides with the (R)-configuration in up to 75 % e.e., whereas the photoisomerized metastable (R)-axial isomer of the catalyst favored the formation of (S)-sulfoxides in up to 43 % e.e. The maximum Δe.e. value obtained in the enantiodivergent sulfoxidation was 118 %, which is identical to the maximum Δe.e. value that was measured in the enantiodivergent epoxidation of alkenes by a related recently described Mn1 catalyst. This iron-based catalyst broadens the scope of photoswitchable enantiodivergent catalysts and may be used in the future to develop a photoswitchable catalytic system that can write digital information on a polymer chain in the form chiral sulfoxide functions.
- Published
- 2023