38 results on '"Ibrahim MNM"'
Search Results
2. Efficacy of Calcium Carbide and leaves of Croton aromaticus and Averrhoa bilinbi in breaking dormancy of Oioscorea yams
- Author
-
Ibrahim, MNM, primary and Liyanage, M de S., additional
- Published
- 2009
- Full Text
- View/download PDF
3. EFFECT OF STAGE OF GROWTH AND ADDITIVES ON DIGESTIBILITY AND PALATABILITY OF GUINEA (PANICUM MAXIMUM, JACQ) GRASS SILAGE
- Author
-
PREMARATNE, SUJATHA, primary, IBRAHIM, MNM, additional, and PERERA, HGD, additional
- Published
- 1993
- Full Text
- View/download PDF
4. Stimulating bioelectric generation and recovery of toxic metals through benthic microbial fuel cell driven by local sago (Cycas revoluta) waste.
- Author
-
Daud NNM, Al-Zaqri N, Yaakop AS, Ibrahim MNM, and Guerrero-Barajas C
- Subjects
- Wastewater, Bacteria metabolism, Electrodes, Electricity, Bioelectric Energy Sources microbiology, Cycas metabolism, Metals, Heavy metabolism
- Abstract
Benthic microbial fuel cell (BMFC) is the most promising type of bioelectrochemical approach for producing electrons and protons from natural organic waste. In the present work, a single-chamber BMFC was used, containing sago (Cycas revoluta) waste as the organic feed for microorganisms. The local wastewater was supplemented with heavy metal ions (Pb
2+ , Cd2+ , Cr3+ , Ni2+ , Co2+ , Ag+ , and Cu2+ ) and used as an inoculation source to evaluate the performance of BMFC against the toxic metal remediations. According to the experimental results, the maximum power density obtained was 42.55 mW/m2 within 25 days of the BMFC operation. The maximum remediation efficiency of the metal ion removal from the wastewater was found to be 99.30% (Ag+ ). The conductive pili-type bacteria species (Acinetobacter species, Leucobacter species, Bacillus species, Proteus species. and Klebsiella pneumoniae) were found in the present study during isolation and identification processes. This study's multiple parameter optimization revealed that pH 7 and room temperature is the best condition for optimal performance. Finally, this study included the mechanism, future recommendations, and concluding remarks., (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)- Published
- 2024
- Full Text
- View/download PDF
5. Conversion of archeological iron rust employing coconut husk lignin.
- Author
-
Nasrun Z, Osman LS, Latif NHA, Elias NHH, Saidin M, Shahidan S, Abdullah SHA, Ali NA, Rusli SSM, Ibrahim MNM, Raja PB, Iqbal MAM, Trache D, and Hussin MH
- Subjects
- Iron, Powders, Magnetic Resonance Spectroscopy, Lignin chemistry, Cocos chemistry
- Abstract
Rust powder collected from an archeological iron was evaluated by complementary analyses such as FTIR, XRD, XRF, and SEM/EDX. The analyses revealed that lepidocrocite (L) was the major component in the archeological iron. Coconut husk (CH) can be classified as a type of lignocellulosic biomass of renewable resources that are widely available, especially in coastal areas. In this research, the isolated lignin extracted from CH is being studied as a potential alternative for environmentally friendly applications. The isolated lignin from soda and organosolv pulping went through several analyses such as FTIR, NMR (
13 C and 2D-HSQC), and TGA analyses. The analyses showed that lignin isolated via soda pulping has superior antioxidant capabilities due to its greater phenolic-OH content compared to lignin isolated from organosolv pulping. The effects of lignin concentrations, pH, and reaction time were utilized in rust conversion studies of an archeological iron. 5 wt% of soda lignin (SL) was revealed as the ideal condition in this rust conversion study with a value of 84.21 %. The treated rust powder with 5 wt% of SL was then further gone through several complementary analyses, which revealed that the treated rust had nearly transformed into an amorphous state., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
6. A quadruplet 3-D laser scribed graphene/MoS 2, functionalised N 2 -doped graphene quantum dots and lignin-based Ag-nanoparticles for biosensing.
- Author
-
Vasudevan M, Perumal V, Raja PB, Ibrahim MNM, Lee HL, Gopinath SCB, Ovinis M, Karuppanan S, Ang PC, Arumugam N, and Kumar RS
- Subjects
- Humans, Molybdenum chemistry, Lignin, Troponin I, Biomarkers, Electrochemical Techniques methods, Quantum Dots chemistry, Graphite chemistry, Nanoparticles, Biosensing Techniques methods
- Abstract
Troponin I is a protein released into the human blood circulation and a commonly used biomarker due to its sensitivity and specificity in diagnosing myocardial injury. When heart injury occurs, elevated troponin Troponin I levels are released into the bloodstream. The biomarker is a strong and reliable indicator of myocardial injury in a person, with immediate treatment required. For electrochemical sensing of Troponin I, a quadruplet 3D laser-scribed graphene/molybdenum disulphide functionalised N
2 -doped graphene quantum dots hybrid with lignin-based Ag-nanoparticles (3D LSG/MoS2 /N-GQDs/L-Ag NPs) was fabricated using a hydrothermal process as an enhanced quadruplet substrate. Hybrid MoS2 nanoflower (H3 NF) and nanosphere (H3 NS) were formed independently by varying MoS2 precursors and were grown on 3D LSG uniformly without severe stacking and restacking issues, and characterized by morphological, physical, and structural analyses with the N-GQDs and Ag NPs evenly distributed on 3D LSG/MoS2 surface by covalent bonding. The selective capture of and specific interaction with Troponin I by the biotinylated aptamer probe on the bio-electrode, resulted in an increment in the charge transfer resistance. The limit of detection, based on impedance spectroscopy, is 100 aM for both H3 NF and H3 NS hybrids, with the H3 NF hybrid biosensor having better analytical performance in terms of linearity, selectivity, repeatability, and stability., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
7. Synthesis of molecularly imprinted polymer by precipitation polymerization for the removal of ametryn.
- Author
-
Roland RM, Bhawani SA, and Ibrahim MNM
- Abstract
Ametryn (AME) is a triazine herbicide which is mainly used to kill unwanted herbs in crops. Despite its importance in agriculture, the usage of AME also poses a risk to humans and the ecosystem due to its toxicity. Hence, it is important to develop a method for the effective removal of AME from various water sources which is in the form of molecular imprinting polymer (MIP). In this study, MIP of AME was synthesized via precipitation polymerization using AME as the template molecule with three different functional monomers including methacrylic acid (MAA), acrylamide (AAm) and 2-vinylpyridine (2VP). The three different synthesized polymers namely MIP (MAA), MIP (AAm) and MIP (2VP) were characterized using Fourier Infra-red spectroscopy (FTIR) and Field Emission Electron Microscopy (FESEM). Then, the batch binding study was carried out using all three MIPs in which MIP (MAA) attained the highest rebinding efficiency (93.73%) among the synthesized polymers. The Energy-Dispersive X-ray spectroscopy (EDX) analysis, Brunauer-Emmett-Teller (BET) analysis and thermogravimetric analysis (TGA) were also conducted on the selected MIP (MAA). Adsorption studies including initial concentration, pH and polymer dosage were also conducted on MIP (MAA). In this study, the highest adsorption efficiency was attained at the optimum condition of 6 ppm of AME solution at pH 7 with 0.1 g of MIP (MAA). MIP (MAA) was successfully applied to remove AME from spiked distilled water, tap water and river water samples with removal efficiencies of 95.01%, 90.24% and 88.37%, respectively., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
8. Biomass and domestic waste: a potential resource combination for bioenergy generation and water treatment via benthic microbial fuel cell.
- Author
-
Aleid GM, Alshammari AS, Alomari AD, Ahmad A, Alaysuy O, and Ibrahim MNM
- Abstract
The benthic microbial fuel cell (BMFC) is one of the most efficient types of bioelectrochemical fuel cell systems. Modern bioelectrochemical fuel cells have several drawbacks, including an unstable organic substrate and a microorganism-unfriendly atmosphere. The recent literature to encounter such issues is one of the emerging talks. Researchers are focusing on the utilization of biomass and waste to encounter such challenges and make the technique more feasible at the pilot scale. This study investigated the combination of local bakery waste as an organic substrate with lignocellulosic biomass material. The whole experiment was conducted for 45 days. At an external resistance of 1000 ῼ and an internal resistance of 677 ῼ, the power density was found to be 3.51 mW/m
2 . Similarly, for Pb2+ , Cd2+ , Cr3+ , Ni2+ , and Co2+ , the degradation efficiency was 84.40%, 81.21%, 80%, 89.50%, and 86.0%, respectively. The bacterial identification results showed that Liquorilactobacillus nagelii, Proteus mirabilis, Pectobacterium punjabense, and Xenorhabdus thuongxuanensis are the most prominent species found on anode biofilm. The method of electron generation in this study, which includes the degradation of metal ions, is also well described. Lastly, optimising the parameters showed that pH 7 provides a feasible environment for operation. A few future suggestions for practical steps are enclosed for the research community., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)- Published
- 2023
- Full Text
- View/download PDF
9. Effect of Polyethylene Glycol Methyl Ether Methacrylate on the Biodegradability of Polyvinyl Alcohol/Starch Blend Films.
- Author
-
Iskalieva A, Yesmurat M, Al Azzam KM, Ainakulova D, Yerbolat Y, Negim ES, Ibrahim MNM, and Gulzhakhan Y
- Abstract
Blend copolymers (PVA/S) were grafted with polyethylene glycol methyl methacrylate (PEGMA) with different ratios. Potassium persulfate was used as an initiator. The blend copolymer (PVA/S) was created by combining poly(vinyl alcohol) (PVA) with starch (S) in various ratios. The main idea was to study the effect of different ratios of the used raw materials on the biodegradability of plastic films. The resulting polymers (PVA/S/PEGMA) were analyzed using FTIR spectroscopy to investigate the hydrogen bond interaction between PVA, S, and PEGMA in the mixtures. TGA and SEM analyses were used to characterize the polymers (PVA/S/AA). The biodegradability and mechanical properties of the PVA/S/PEGMA blend films were evaluated. The findings revealed that the mechanical properties of the blend films are highly influenced by PEGMA. The time of degradation of the films immersed in soil and Coca-Cola increases as the contents of PVA and S and the molecular weight (MW) of PEGMA increase in the terpolymer. The M8 sample (PVA/S/PEGMA in the ratio of 3:1:2, respectively) with a MW of 950 g/mol produced the lowest elongation at break (67.5%), whereas M1 (PVA/S/PEGMA in the ratio of 1:1:1, respectively) with a MW of 300 g/mol produced the most (150%). The film's tensile strength and elongation at break were improved by grafting PEGMA onto the blending polymer (PAV-b-S). T
g and Tm increased when the PEGMA MW increased from 300 to 950. Tg (48.4 °C) and Tm (190.9 °C) were the lowest in M1 (300), while Tg (84.8 °C) and Tm (190.9 °C) were greatest in M1 (950) at 209.3 °C. The increased chain and molecular weight of PEGMA account for the increase in Tg and Tm of the copolymers.- Published
- 2023
- Full Text
- View/download PDF
10. Template-assisted synthesis of molecularly imprinted polymers for the removal of methyl red from aqueous media.
- Author
-
Shafqat SR, Bhawani SA, Bakhtiar S, Ibrahim MNM, and Shafqat SS
- Abstract
This study entails the synthesis of molecularly imprinted polymers (MIPs) with good selectivity coefficients for azo dye as a potential sorbent material to extract azo dye from polluted aqueous media. A series of MIPs for methyl red (MR) as a template, were synthesized by changing the molar ratio of functional monomers, via precipitation polymerization format of non-covalent approach. Water-soluble functional monomer; acrylic acid (AA) was used to weave the frame work of polymers while ethylene glycol dimethacrylate (EGDMA) was utilized as crosslinking monomer. The impact of different experimental parameters, such as mole ratio of monomer (functional) to crosslinking monomer on the molecular recognition was investigated. The highly efficient and selective MR-MIP was used for the removal of spiked MR dye from different water samples. The selected imprinted polymer, MR1-MIP was able to selectively remove the MR molecules from aqueous media. A significant amount of dye was removed by MR1-MIP from the river water samples with a high degree of removal efficiency i.e. 92.25%. The imprinting factor of 3.75 for MR1-MIP indicated that the high selectivity in terms of adsorption for MR. A minimum loss of only ~ 3.35% in the removal efficiency within ten sequential cycles of adsorption-desorption study evidenced that MR-MIPs could be used as the most cost effective and best sorbent for the removal of MR from polluted water. Furthermore, the structural properties of MR-MIPs were characterized by FTIR and EDX, whereas TGA, SEM and BET were used to describe the thermal, morphological and surface structures of the particles, respectively., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
11. Electrochemical biosensor detection on respiratory and flaviviruses.
- Author
-
Ang PC, Perumal V, Ibrahim MNM, Adnan R, Mohd Azman DK, Gopinath SCB, and Raja PB
- Subjects
- Humans, Flavivirus, Viruses, Biosensing Techniques
- Abstract
Viruses have spread throughout the world and cause acute illness or death among millions of people. There is a growing concern about methods to control and combat early-stage viral infections to prevent the significant public health problem. However, conventional detection methods like polymerase chain reaction (PCR) requires sample purification and are time-consuming for further clinical diagnosis. Hence, establishing a portable device for rapid detection with enhanced sensitivity and selectivity for the specific virus to prevent further spread becomes an urgent need. Many research groups are focusing on the potential of the electrochemical sensor to become a key for developing point-of-care (POC) technologies for clinical analysis because it can solve most of the limitations of conventional diagnostic methods. Herein, this review discusses the current development of electrochemical sensors for the detection of respiratory virus infections and flaviviruses over the past 10 years. Trends in future perspectives in rapid clinical detection sensors on viruses are also discussed. KEY POINTS: • Respiratory related viruses and Flavivirus are being concerned for past decades. • Important to differentiate the cross-reactivity between the virus in same family. • Electrochemical biosensor as a suitable device to detect viruses with high performance., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
12. Farmer's knowledge and suggested approaches for controlling aflatoxin contamination of raw milk in Pakistan.
- Author
-
Yunus AW, Lindahl JF, Anwar Z, Ullah A, and Ibrahim MNM
- Abstract
Monitoring of aflatoxin levels in milk is often complicated in developing countries due to the dominance of informal markets channeling milk in raw form. Farmer's awareness and voluntary participation in aflatoxin mitigation can be critical in such scenarios. Therefore, the present study was conducted to understand the perceptions of dairy farmers about aflatoxins and link it with aflatoxin mitigation programs on milk in Pakistan. Information was collected from 450 peri-urban dairy farmers in seven cities using questionnaires. Majority (77.9%) of the farmers were aware of the negative impact of moldy feed on animal health. However, only 40.6% of the farmers were aware of the transferability of the toxins from moldy feed to milk. The farmers had almost no awareness of aflatoxins as 95% never heard of the term. After receiving an onsite briefing on effects of the toxin on animal and human health, and its transferability to milk, 98.3% farmers showed willingness to buy aflatoxin-safe feedstuffs, while 88.5% showed willingness to control aflatoxin in milk. Around half of the farmers considered aflatoxin control programs as affordable. On average, farmers agreed to pay 10.1% higher price for aflatoxin certified oilseed cakes. Availability of feedstuffs certified of low aflatoxin content was suggested by 22% of the participants as the critical step in reducing aflatoxins in milk. Other important suggestions included; subsidy on quality feeds (18%), raising awareness (18%), and legislation and monitoring (16%). The present results suggest that the current practice of milk monitoring in the country can yield desirable results only if it is coupled with feed certification programs ensuing availability of aflatoxin-safe feeds. Further, awareness can positively impact participation of producers in aflatoxin control programs. In this regard, awareness about effects of aflatoxins on animal health was found to be a more powerful trigger of voluntary control compared with the awareness of the toxin's transferability to milk., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Yunus, Lindahl, Anwar, Ullah and Ibrahim.)
- Published
- 2022
- Full Text
- View/download PDF
13. Adsorption Behavior of Methylene Blue Cationic Dye in Aqueous Solution Using Polypyrrole-Polyethylenimine Nano-Adsorbent.
- Author
-
Birniwa AH, Mahmud HNME, Abdullahi SS, Habibu S, Jagaba AH, Ibrahim MNM, Ahmad A, Alshammari MB, Parveen T, and Umar K
- Abstract
In this work, a polypyrrole-polyethyleneimine (PPy-PEI) nano-adsorbent was successfully synthesized for the removal of methylene blue (MB) from an aqueous solution. Synthetic dyes are among the most prevalent environmental contaminants. A new conducting polymer-based adsorbent called (PPy-PEI) was successfully produced using ammonium persulfate as an oxidant. The PEI hyper-branched polymer with terminal amino groups was added to the PPy adsorbent to provide more effective chelating sites for dyes. An efficient dye removal from an aqueous solution was demonstrated using a batch equilibrium technique that included a polyethyleneimine nano-adsorbent (PPy-PEI). The best adsorption parameters were measured at a 0.35 g dosage of adsorbent at a pH of 6.2 and a contact period of 40 min at room temperature. The produced PPy-PEI nano-adsorbent has an average particle size of 25-60 nm and a BET surface area of 17 m
2 /g. The results revealed that PPy-PEI nano-composite was synthesized, and adsorption was accomplished in the minimum amount of time. The maximum monolayer power, qmax, for MB was calculated using the isothermal adsorption data, which matched the Langmuir isotherm model, and the kinetic adsorption data, which more closely fitted the Langmuir pseudo-second-order kinetic model. The Langmuir model was used to calculate the maximum monolayer capacity, or qmax, for MB, which was found to be 183.3 mg g-1 . The as-prepared PPy-PEI nano-adsorbent totally removes the cationic dyes from the aqueous solution., Competing Interests: The authors declare no conflict of interest.- Published
- 2022
- Full Text
- View/download PDF
14. Local fruit wastes driven benthic microbial fuel cell: a sustainable approach to toxic metal removal and bioelectricity generation.
- Author
-
Yaqoob AA, Guerrero-Barajas C, Ibrahim MNM, Umar K, and Yaakop AS
- Subjects
- Electricity, Electrodes, Fruit, Wastewater, Bioelectric Energy Sources, Sapindaceae
- Abstract
The present work focused on the utilization of three local wastes, i.e., rambutan (Nephelium lappaceum), langsat (Lansium parasiticum), and mango (Mangifera indica) wastes, as organic substrates in a benthic microbial fuel cell (BMFC) to reduce the cadmium and lead concentrations from synthetic water. Out of the three wastes, the mango waste promoted a maximum current density (87.71 mA/m
2 ) along with 78% and 80% removal efficiencies for Cd2+ and Pb2+ , respectively. The bacterial identification proved that Klebsiella pneumoniae, Enterobacter, and Citrobacter were responsible for metal removal and energy generation. In the present work, the BMFC mechanism, current challenges, and future recommendations are also enclosed., (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)- Published
- 2022
- Full Text
- View/download PDF
15. Insight into the photodegradation mechanism of bisphenol-A by oxygen doped mesoporous carbon nitride under visible light irradiation and DFT calculations.
- Author
-
Shittu FB, Iqbal A, Ahmad MN, Yusop MR, Ibrahim MNM, Sabar S, Wilson LD, and Yanto DHY
- Abstract
Oxygen doped mesoporous carbon nitride (O-MCN) was successfully synthesized through one-step thermal polymerization of urea and glucose utilizing nanodisc silica (NDS) from rice husk ash as a hard template. The CO
2 gas, NH3 and water vapor produced during the thermal process reshaped the morphology and textural properties of the of O-MCN compared to pristine mesoporous carbon nitride (MCN). Highest bisphenol A (BPA) removal achieved under visible light irradiation was 97%, with 60% mineralization ([BPA] = 10 mg L-1 : catalyst dosage = 40 mg L-1 ; pH = 10; 180 min). In addition to mesoporosity, the sub-gap impurity states created from the oxygen doping reduced recombination rate of photogenerated carriers. Holes (h+ ) and superoxide (O2 ˙- ) were identified as the predominant active species responsible for the photodegradation process. The photodegradation route was proposed based on the intermediates detected by LC-time-of-flight/mass spectrometry (LC/TOF-MS). The Density of States (DOS) showed that oxygen doping resulted in a higher photoactivity due to the stronger localization and delocalization of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). The adsorption pathway of the BPA on the O-MCN and MCN was successfully predicted using the DFT calculations, namely molecular electrostatic potential (MEP), global and local descriptors., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (This journal is © The Royal Society of Chemistry.)- Published
- 2022
- Full Text
- View/download PDF
16. A recent advancement on preparation, characterization and application of nanolignin.
- Author
-
Hussin MH, Appaturi JN, Poh NE, Latif NHA, Brosse N, Ziegler-Devin I, Vahabi H, Syamani FA, Fatriasari W, Solihat NN, Karimah A, Iswanto AH, Sekeri SH, and Ibrahim MNM
- Subjects
- Lignin chemistry, Nanoparticles chemistry
- Abstract
Each year, 50 to 70 million tonnes of lignin are produced worldwide as by-products from pulp industries and biorefineries through numerous processes. Nevertheless, about 98% of lignin is directly burnt to produce steam to generate energy for the pulp mills and only a handful of isolated lignin is used as a raw material for the chemical conversion and for the preparation of various substances as well as modification of lignin into nanomaterials. Thus, thanks to its complex structure, the conversion of lignin to nanolignin, attracting growing attention and generating considerable interest in the scientific community. The objective of this review is to provide a complete understanding and knowledge of the synthesis methods and functionalization of various lignin nanoparticles (LNP). The characterization of LNP such as structural, thermal, molecular weight properties together with macromolecule and quantification assessments are also reviewed. In particular, emerging applications in different areas such as UV barriers, antimicrobials, drug administration, agriculture, anticorrosives, the environment, wood protection, enzymatic immobilization and others were highlighted. In addition, future perspectives and challenges related to the development of LNP are discussed., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
17. Utilizing Biomass-Based Graphene Oxide-Polyaniline-Ag Electrodes in Microbial Fuel Cells to Boost Energy Generation and Heavy Metal Removal.
- Author
-
Yaqoob AA, Serrà A, Bhawani SA, Ibrahim MNM, Khan A, Alorfi HS, Asiri AM, Hussein MA, Khan I, and Umar K
- Abstract
Although regarded as environmentally stable, bioelectrochemical fuel cells or, microbial fuel cells (MFCs) continue to face challenges with sustaining electron transport. In response, we examined the performance of two graphene composite-based anode electrodes-graphene oxide (GO) and GO-polymer-metal oxide (GO-PANI-Ag)-prepared from biomass and used in MFCs. Over 7 days of operation, GO energy efficiency peaked at 1.022 mW/m
2 and GO-PANI-Ag at 2.09 mW/m2 . We also tested how well the MFCs could remove heavy metal ions from synthetic wastewater, a secondary application of MFCs that offers considerable benefits. Overall, GO-PANI-Ag had a higher removal rate than GO, with 78.10% removal of Pb(II) and 80.25% removal of Cd(II). Material characterizations, electrochemical testing, and microbial testing conducted to validate the anodes performance confirmed that using new materials as electrodes in MFCs can be an attractive approach to improve the electron transportation. When used with a natural organic substrate (e.g., sugar cane juice), they also present fewer challenges. We also optimized different parameters to confirm the efficiency of the MFCs under various operating conditions. Considering those results, we discuss some lingering challenges and potential possibilities for MFCs.- Published
- 2022
- Full Text
- View/download PDF
18. Catalytic oxidative desulfurisation over Co/Fe-γAl 2 O 3 catalyst: performance, characterisation and computational study.
- Author
-
Nazmi NASM, Razak FIA, Mokhtar WNAW, Ibrahim MNM, Adam F, Yahaya N, Rosid SJM, Shukri NM, and Abdullah WNW
- Subjects
- Catalysis, Cobalt, Oxidation-Reduction, Oxides, Iron, Oxidative Stress
- Abstract
The world faces the challenge to produce ultra-low sulfur diesel with low-cost technology. Therefore, this research emphasised on production of low sulfur fuel utilising nanoparticle catalyst under mild condition. A small amount of cobalt oxide (10-30 wt%) was introduced into the Fe/Al
2 O3 catalyst through the wet impregnation method. Cobalt modification induces a positive effect on the performance of the iron catalyst. Hence, the insertion of cobalt species into Fe/Al2 O3 led to the formation of lattice fringes in all directions which resulted in the formation of Co3 O4 and Fe3 O4 species. The optimised catalyst, Co/Fe-Al2 O3 , calcined at 400 °C with a dopant ratio of 10:90 indicating the highest desulfurisation activity by removing 96% of thiophene, 100% of dibenzothiophene (DBT) and 92% of 4,6-dimethyl dibenzothiophene (4,6-DMDBT). Based on the density functional theory (DFT) on Co/Fe-Al2 O3 , two pathways with the overall energy of -40.78 eV were suggested for the complete oxidation of DBT., (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)- Published
- 2022
- Full Text
- View/download PDF
19. Highly Effective Cow Bone Based Biocomposite for the Sequestration of Organic Pollutant Parameter from Palm Oil Mill Effluent in a Fixed Bed Column Adsorption System.
- Author
-
Oyekanmi AA, Alshammari MB, Ibrahim MNM, Hanafiah MM, Elnaggar AY, Ahmad A, Oyediran AT, Rosli MA, Mohd Setapar SH, Nik Daud NN, and Hussein EE
- Abstract
The reduction of chemical oxygen demand (COD) from palm oil mill effluent (POME) is very significant to ensure aquatic protection and the environment. Continuous adsorption of COD in a fixed bed column can be an effective treatment process for its reduction prior to discharge. Adsorption capacity of bone derived biocomposite synthesized from fresh cow bones, zeolite, and coconut shells for the reduction in the organic pollutant parameter was investigated in this study in a fixed bed column. The effect of influent flow rate (1.4, 2.0, and 2.6 mL/min) was determined at an influent pH 7. The optimum bed capacity on the fabricated composite of surface area of 251.9669 m
2 /g was obtained at 1.4 mL/min at breakthrough time of 5.15 h influent POME concentration. The experimental data were fitted to Thomas, Adams-Bohart, and Yoon-Nelson models fixed bed adsorption models. It was revealed that the results fitted well to the Adams Bohart model with a correlation coefficient of R2 > 0.96 at different influent concentration. Adsorption rate constant was observed to increase at lower flow rate influent concentration, resulting in longer empty bed contact time (EBCT) for the mass transfer zone of the column to reach the outlet of the effluent concentration. In general, the overall kinetics of adsorption indicated that the reduction in COD from POME using a bone-biocomposite was effective at the initial stage of adsorption. The pore diffusion model better described the breakthrough characteristics for COD reduction with high correlation coefficient. Shorter breakthrough time compared to EBCT before regeneration indicated that the bone composite was suitable and effective for the reduction in COD from POME using fixed bed column adsorption.- Published
- 2021
- Full Text
- View/download PDF
20. Application of rotten rice as a substrate for bacterial species to generate energy and the removal of toxic metals from wastewater through microbial fuel cells.
- Author
-
Daud NNM, Ahmad A, Yaqoob AA, and Ibrahim MNM
- Subjects
- Electricity, Electrodes, Wastewater, Bioelectric Energy Sources, Oryza
- Abstract
Microbial fuel cells (MFCs) are the efficient and sustainable approach for the removal of toxic metals and generate energy concurrently. This article highlighted the effective use of rotten rice as an organic source for bacterial species to generate electricity and decrease the metal concentrations from wastewater. The obtained results were corresponding to the unique MFCs operation where the 510 mV voltage was produced within 14-day operation with 1000 Ω external resistance. The maximum power density and current density were found to be 2.9 mW/m
2 and 168.42 mA/m2 with 363.6 Ω internal resistance. Similarly, the maximum metal removal efficiency was found to be 82.2% (Cd), 95.71% (Pb), 96.13% (Cr), 89.50% (Ni), 89.82 (Co), 99.50% (Ag), and 99.88% (Cu). In the biological test, it was found that Lysinibacillus strains, Chryseobacterium strains, Escherichia strains, Bacillus strains are responsible for energy generation and metal removal. Furthermore, a multiparameter optimization revealed that MFCs are the best approach for a natural environment with no special requirements. Lastly, the working mechanism of MFCs and future recommendations are enclosed., (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)- Published
- 2021
- Full Text
- View/download PDF
21. Bioelectricity production and xylene biodegradation through double chamber benthic microbial fuel cells fed with sugarcane waste as a substrate.
- Author
-
Umar MF, Rafatullah M, Abbas SZ, Ibrahim MNM, and Ismail N
- Subjects
- Electricity, Electrodes, RNA, Ribosomal, 16S, Staphylococcus, Wastewater, Xylenes, Bioelectric Energy Sources, Saccharum
- Abstract
Xylene, a recalcitrant compound present in wastewater from activities of petrochemical and chemical industries causes chronic problems for living organisms and the environment. Xylene contaminated wastewater may be biodegraded through a benthic microbial fuel cell (BMFC) as seen in this study. Xylene was oxidized into intermediate 3-methyl benzoic acid and entirely converted into non-toxic carbon dioxide. The highest voltage of the BMFC reactor was generated at 410 mV between 23 and 90 days when cell potential was 1 kΩ. The reactor achieved a maximum power density of about 63 mW/m
2 , and a current of 0.4 mA which was optimized from variable resistance (20 Ω - 1 kΩ). However, the maximum biodegradation efficiency of the BMFC was at 87.8%. The cyclic voltammetry curve helped to determine that the specific capacitance was 0.124 F/g after 30 days of the BMFC operation. Furthermore, the fitting equivalent circuit was observed with the help of Nyquist plot for calculating overall internal resistance of 65.82 Ω on 30th day and 124.5 Ω on 80th day. Staphylococcus edaphicus and Staphylococcus sparophiticus were identified by 16S rRNA sequencing as the dominant species in the control and BMFC electrode, presumably associated with xylene biodegradation., (Copyright © 2021 Elsevier B.V. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
22. Large-scale genomic analysis reveals the genetic cost of chicken domestication.
- Author
-
Wang MS, Zhang JJ, Guo X, Li M, Meyer R, Ashari H, Zheng ZQ, Wang S, Peng MS, Jiang Y, Thakur M, Suwannapoom C, Esmailizadeh A, Hirimuthugoda NY, Zein MSA, Kusza S, Kharrati-Koopaee H, Zeng L, Wang YM, Yin TT, Yang MM, Li ML, Lu XM, Lasagna E, Ceccobelli S, Gunwardana HGTN, Senasig TM, Feng SH, Zhang H, Bhuiyan AKFH, Khan MS, Silva GLLP, Thuy LT, Mwai OA, Ibrahim MNM, Zhang G, Qu KX, Hanotte O, Shapiro B, Bosse M, Wu DD, Han JL, and Zhang YP
- Subjects
- Animals, Animals, Domestic genetics, Genome, Genomics, Humans, Chickens genetics, Domestication
- Abstract
Background: Species domestication is generally characterized by the exploitation of high-impact mutations through processes that involve complex shifting demographics of domesticated species. These include not only inbreeding and artificial selection that may lead to the emergence of evolutionary bottlenecks, but also post-divergence gene flow and introgression. Although domestication potentially affects the occurrence of both desired and undesired mutations, the way wild relatives of domesticated species evolve and how expensive the genetic cost underlying domestication is remain poorly understood. Here, we investigated the demographic history and genetic load of chicken domestication., Results: We analyzed a dataset comprising over 800 whole genomes from both indigenous chickens and wild jungle fowls. We show that despite having a higher genetic diversity than their wild counterparts (average π, 0.00326 vs. 0.00316), the red jungle fowls, the present-day domestic chickens experienced a dramatic population size decline during their early domestication. Our analyses suggest that the concomitant bottleneck induced 2.95% more deleterious mutations across chicken genomes compared with red jungle fowls, supporting the "cost of domestication" hypothesis. Particularly, we find that 62.4% of deleterious SNPs in domestic chickens are maintained in heterozygous states and masked as recessive alleles, challenging the power of modern breeding programs to effectively eliminate these genetic loads. Finally, we suggest that positive selection decreases the incidence but increases the frequency of deleterious SNPs in domestic chicken genomes., Conclusion: This study reveals a new landscape of demographic history and genomic changes associated with chicken domestication and provides insight into the evolutionary genomic profiles of domesticated animals managed under modern human selection.
- Published
- 2021
- Full Text
- View/download PDF
23. Laser-scribed graphene nanofiber decorated with oil palm lignin capped silver nanoparticles: a green biosensor.
- Author
-
Tai MJY, Perumal V, Gopinath SCB, Raja PB, Ibrahim MNM, Jantan IN, Suhaimi NSH, and Liu WW
- Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), requires a high level of attention and is one of the most infectious diseases in the air. Present methods of diagnosing TB remain ineffective owing to their low sensitivity and time consumption. In this study, we produced a green graphene nanofiber laser biosensor (LSG-NF) decorated with oil palm lignin-based synthetic silver nanoparticles (AgNPs). The resulting composite morphology was observed by field-emission scanning electron microscopy and transmission electron microscopy, which revealed the effective adaptation of the AgNPs to the LSG-NF surface. The successful attachment of AgNPs and LSG-NFs was also evident from X-ray diffraction and Raman spectroscopy studies. In order to verify the sensing efficiency, a selective DNA sample captured on AgNPs was investigated for specific binding with M.tb target DNA through selective hybridisation and mismatch analysis. Electrochemical impedance studies further confirmed sensitive detection of up to 1 fM, where a detection limit of 10
-15 M was obtained by estimating the signal-to-noise ratio (S/N = 3:1) as 3σ. Successful DNA immobilisation and hybridisation was confirmed by the detection of phosphorus and nitrogen peaks based on X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The stability and repeatability of the analysis were high. This approach provides an affordable potential sensing system for the determination of M. tuberculosis biomarker and thus provides a new direction in medical diagnosis.- Published
- 2021
- Full Text
- View/download PDF
24. Preparation and characterization of nanosized lignin from oil palm (Elaeis guineensis) biomass as a novel emulsifying agent.
- Author
-
Sekeri SH, Ibrahim MNM, Umar K, Yaqoob AA, Azmi MN, Hussin MH, Othman MBH, and Malik MFIA
- Subjects
- Biomass, Cell Line, Emulsifying Agents pharmacology, Humans, Lignin pharmacology, Nanoparticles, Thermogravimetry, Toxicity Tests, Emulsifying Agents chemistry, Lignin chemistry, Palm Oil chemistry
- Abstract
A study was carried out to determine the effectiveness of lignin, extracted from oil palm (Elaeis guineensis) biomass as water-in-oil (W/O) emulsifying agent. To achieve this goal, soda lignin (SL) was extracted via soda pulping process and a series of nanosized soda lignin (NSL) were prepared using homogenizer at three different speed i.e. 10,400 rpm (NSL 10), 11,400 rpm (NSL 11) and 12,400 rpm (NSL 12) for one hour. All prepared samples were characterized by FT-IR, UV-Vis spectroscopy, thermogravimetric analysis (TGA), zeta potential analyser, Transmission Electron Microscope (TEM) and Extreme High Resolution Field Emission Scanning Electron Microscope (XHR-FESEM). The result of FTIR showed that there is no prominent change occurred in spectra of all samples while a good stability was reflected by TGA curves. The percentage of creaming index and visual observations of all samples demonstrated that NSL 12 and dosage 2 g (out of 1 g, 1.5 g and 2 g) were found to be the best among all samples. Furthermore, the results of IFT indicate that NSL 12 was proven to be more stable than the commercial product. Therefore, NSL 12 is selected for toxicological studies and was found safe in both, in vitro and in vivo studies., Competing Interests: Declaration of competing interest The authors declare no conflict of interest., (Copyright © 2020. Published by Elsevier B.V.)
- Published
- 2020
- Full Text
- View/download PDF
25. Author Correction: 863 genomes reveal the origin and domestication of chicken.
- Author
-
Wang MS, Thakur M, Peng MS, Jiang Y, Frantz LAF, Li M, Zhang JJ, Wang S, Peters J, Otecko NO, Suwannapoom C, Guo X, Zheng ZQ, Esmailizadeh A, Hirimuthugoda NY, Ashari H, Suladari S, Zein MSA, Kusza S, Sohrabi S, Kharrati-Koopaee H, Shen QK, Zeng L, Yang MM, Wu YJ, Yang XY, Lu XM, Jia XZ, Nie QH, Lamont SJ, Lasagna E, Ceccobelli S, Gunwardana HGTN, Senasige TM, Feng SH, Si JF, Zhang H, Jin JQ, Li ML, Liu YH, Chen HM, Ma C, Dai SS, Bhuiyan AKFH, Khan MS, Silva GLLP, Le TT, Mwai OA, Ibrahim MNM, Supple M, Shapiro B, Hanotte O, Zhang G, Larson G, Han JL, Wu DD, and Zhang YP
- Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
- Published
- 2020
- Full Text
- View/download PDF
26. 863 genomes reveal the origin and domestication of chicken.
- Author
-
Wang MS, Thakur M, Peng MS, Jiang Y, Frantz LAF, Li M, Zhang JJ, Wang S, Peters J, Otecko NO, Suwannapoom C, Guo X, Zheng ZQ, Esmailizadeh A, Hirimuthugoda NY, Ashari H, Suladari S, Zein MSA, Kusza S, Sohrabi S, Kharrati-Koopaee H, Shen QK, Zeng L, Yang MM, Wu YJ, Yang XY, Lu XM, Jia XZ, Nie QH, Lamont SJ, Lasagna E, Ceccobelli S, Gunwardana HGTN, Senasige TM, Feng SH, Si JF, Zhang H, Jin JQ, Li ML, Liu YH, Chen HM, Ma C, Dai SS, Bhuiyan AKFH, Khan MS, Silva GLLP, Le TT, Mwai OA, Ibrahim MNM, Supple M, Shapiro B, Hanotte O, Zhang G, Larson G, Han JL, Wu DD, and Zhang YP
- Subjects
- Animal Distribution, Animals, Animals, Domestic genetics, Asia, Domestication, Gene Pool, Geography, Likelihood Functions, Poultry genetics, Selection, Genetic, Chickens genetics, Genome, Phylogeny
- Abstract
Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world's most numerous domestic animal.
- Published
- 2020
- Full Text
- View/download PDF
27. Advances and Challenges in Developing Efficient Graphene Oxide-Based ZnO Photocatalysts for Dye Photo-Oxidation.
- Author
-
Yaqoob AA, Noor NHBM, Serrà A, and Ibrahim MNM
- Abstract
The efficient remediation of organic dyes from wastewater is increasingly valuable in water treatment technology, largely owing to the tons of hazardous chemicals currently and constantly released into rivers and seas from various industries, including the paper, pharmaceutical, textile, and dye production industries. Using solar energy as an inexhaustible source, photocatalysis ranks among the most promising wastewater treatment techniques for eliminating persistent organic pollutants and new emerging contaminants. In that context, developing efficient photocatalysts using sunlight irradiation and effectively integrating them into reactors, however, pose major challenges in the technologically relevant application of photocatalysts. As a potential solution, graphene oxide (GO)-based zinc oxide (ZnO) nanocomposites may be used together with different components (i.e., ZnO and GO-based materials) to overcome the drawbacks of ZnO photocatalysts. Indeed, mounting evidence suggests that using GO-based ZnO nanocomposites can promote light absorption, charge separation, charge transportation, and photo-oxidation of dyes. Despite such advances, viable, low-cost GO-based ZnO nanocomposite photocatalysts with sufficient efficiency, stability, and photostability remain to be developed, especially ones that can be integrated into photocatalytic reactors. This article offers a concise overview of state-of-the-art GO-based ZnO nanocomposites and the principal challenges in developing them., Competing Interests: The authors declare no conflict of interest.
- Published
- 2020
- Full Text
- View/download PDF
28. Recent Advances in Anodes for Microbial Fuel Cells: An Overview.
- Author
-
Yaqoob AA, Ibrahim MNM, Rafatullah M, Chua YS, Ahmad A, and Umar K
- Abstract
The recycling and treatment of wastewater using microbial fuel cells (MFCs) has been attracting significant attention as a way to control energy crises and water pollution simultaneously. Despite all efforts, MFCs are unable to produce high energy or efficiently treat pollutants due to several issues, one being the anode's material. The anode is one of the most important parts of an MFC. Recently, different types of anode materials have been developed to improve the removal rate of pollutants and the efficiency of energy production. In MFCs, carbon-based materials have been employed as the most commonly preferred anode material. An extensive range of potentials are presently available for use in the fabrication of anode materials and can considerably minimize the current challenges, such as the need for high quality materials and their costs. The fabrication of an anode using biomass waste is an ideal approach to address the present issues and increase the working efficiency of MFCs. Furthermore, the current challenges and future perspectives of anode materials are briefly discussed.
- Published
- 2020
- Full Text
- View/download PDF
29. Synthesis of molecularly imprinted polymer for removal of Congo red.
- Author
-
Shafqat SR, Bhawani SA, Bakhtiar S, and Ibrahim MNM
- Abstract
Congo red (CR) is an anionic azo dye widely used in many industries including pharmaceutical, textile, food and paint industries. The disposal of huge amount of CR into the various streams of water has posed a great threat to both human and aquatic life. Therefore, it has become an important aspect of industries to remove CR from different water sources. Molecular imprinting technology is a very slective method to remove various target pollutant from environment. In this study a precipitation polymerization was employed for the effective and selective removal of CR from contaminated aqueous media. A series of congo red molecularly imprinted polymers (CR-MIPs) of uniform size and shape was developed by changing the mole ratio of the components. The optimum ratio (0.1:4: 20, template, functional monomer and cross-linking monomer respectively) for CR1-MIP from synthesized polymers was able to rebind about 99.63% of CR at the optimum conditions of adsorption parameters (contact time 210 min, polymer dosage 0.5 g, concentration 20 ppm and pH 7). The synthesized polymers were characterized by various techniques such as Fourier Infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), and Brumauer-Emmett-Teller (BET). The polymer particles have successfully removed CR from different aqueous media with an efficiency of about ~ 90%., Competing Interests: Competing interestsAll authors declare that they have no competing interests., (© The Author(s) 2020.)
- Published
- 2020
- Full Text
- View/download PDF
30. Aflatoxin Contamination of Milk Produced in Peri-urban Farms of Pakistan: Prevalence and Contributory Factors.
- Author
-
Yunus AW, Ullah A, Lindahl JF, Anwar Z, Ullah A, Saif S, Ali M, Zahur AB, Irshad H, Javaid S, Imtiaz N, Farooq U, Ahsan A, Fatima Z, Hashmi AA, Abbasi BHA, Bari Z, Khan IU, and Ibrahim MNM
- Abstract
Aflatoxin M
1 contamination of milk in Pakistan, like many developing countries, is poorly understood. The present study was therefore conducted to determine AFM1 contamination of milk and its contributory factors in Pakistan. We sampled milk and feedstuffs from 450 peri-urban dairy farms in seven major cities following a cross-sectional study design. Analysis of milk using ELISA revealed high contamination with an overall average of 3164.5 ng of AFM1 /L, and significant differences ( p < 0.001) between cities. The milk sampled from Gilgit, in northern hilly areas, had an average AFM1 level of 92.5 ng/L. Milk from other cities had 3529.7 ng/L average contamination, with only 5.7% samples qualifying the maximum tolerable limit of 500 ng of AFM1 /L. Heavy mean aflatoxin contamination was found in bakery waste (724.6 μg/kg), and cottonseed cake (600.8 μg/kg). Rest of the other feedstuffs had moderate to low mean aflatoxin contamination, ranging from 66.0 μg/kg in maize stover to 3.4 μg/kg in wheat bran. The mean aflatoxin level in commercial dairy concentrates was 32.7 µg/kg. About 80% of the total aflatoxin intake of dairy animals was contributed by cottonseed cake alone due to its high aflatoxin contamination and proportion in dairy rations. On-farm storage time of oilseed cakes varied ( p < 0.01) in different cities but was not associated with aflatoxin contamination. The exceptionally high AFM1 contamination suggests that milk from peri-urban dairy farms is a serious public health threat in Pakistan. This situation can be mitigated by reducing aflatoxin contamination in cottonseed cake and promoting the use of commercial concentrates and other feedstuffs with low contamination., (Copyright © 2020 Yunus, Ullah, Lindahl, Anwar, Ullah, Saif, Ali, Zahur, Irshad, Javaid, Imtiaz, Farooq, Ahsan, Fatima, Hashmi, Abbasi, Bari, Khan and Ibrahim.)- Published
- 2020
- Full Text
- View/download PDF
31. Bioengineered silver nanoparticles capped with bovine serum albumin and its anticancer and apoptotic activity against breast, bone and intestinal colon cancer cell lines.
- Author
-
Majeed S, Aripin FHB, Shoeb NSB, Danish M, Ibrahim MNM, and Hashim R
- Subjects
- 3T3 Cells, Animals, Antineoplastic Agents pharmacology, Bone Neoplasms drug therapy, Bone Neoplasms pathology, Breast Neoplasms drug therapy, Breast Neoplasms pathology, Cattle, Cell Line, Tumor, Colonic Neoplasms drug therapy, Colonic Neoplasms pathology, DNA metabolism, Female, Metal Nanoparticles ultrastructure, Mice, Neoplasms pathology, Silver pharmacology, Spectrometry, X-Ray Emission, Spectroscopy, Fourier Transform Infrared, Thermogravimetry, Antineoplastic Agents therapeutic use, Apoptosis drug effects, Bioengineering, Metal Nanoparticles chemistry, Neoplasms drug therapy, Serum Albumin, Bovine chemistry, Silver therapeutic use
- Abstract
The aim of the current study was to biosynthesize the silver nanoparticles (AgNPs) from the bacterial strain of Bacillus cereus (ATCC 14579) extracellularly. When bacterial extract was challenged with 1 mM silver nitrate (AgNO3) the color of the extract changed into brown confirms the formation of nanoparticles. These nanoparticles were capped with bovine serum albumin (BSA). UV- visible spectroscopy showed the absorption peak at 420 nm indicates the formation of AgNPs. Fourier Infra -red (FTIR) attenuated total reflection (ATR) spectroscopy showed amide and amine group associated with AgNPs that stabilizes the nanoparticles. Energy dispersive x-ray spectroscopy (EDX) showed a strong peak of silver confirms the presence of silver. Thermo gravimetric analysis (TGA) analysis was used to determine the protein degradation showed less protein degradation at higher temperature confirms the stability of nanoparticles. Transmission electron microscopy (TEM) showed the AgNPs are well dispersed and spherical, and 5.37 nm to 17.19 whereas albumin coated nanoparticles are size ranges from 11.26 nm to 23.85 nm. The anticancer effect of capped AgNPs (cAgNPs) showed the IC50 value against breast cancer MCF-7 at 80 μg/mL, intestinal colon cancer HCT- 116 60 μg/mL, and bone cancer osteosarcoma MG-63 cell line80 μg/mL while against normal fibroblast cells 3T3 cells showed the IC50 value at 140 μg/mL. Lactate dehydrogenase assay (LDH) showed higher toxicity on MCF-7, HCT-116, and MG-63 cells. The apoptotic study clearly showed the blebbing of membrane, chromatin condensation due to the production of reactive oxygen species (ROS) by ethidium bromide and acridine orange dual staining method. The DNA analysis showed the complete fragmentation of the DNA of treated cells when compared with control cells., (Copyright © 2019 Elsevier B.V. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
32. Bioinspired 2D carbon sheets decorated with MnFe 2 O 4 nanoparticles for preconcentration of inorganic arsenic, and its determination by ICP-OES.
- Author
-
Ahmad H, Haseen U, Umar K, Ansari MS, and Ibrahim MNM
- Subjects
- Particle Size, Spectrum Analysis, Surface Properties, Arsenic analysis, Arsenic chemistry, Biomimetics, Carbon chemistry, Ferric Compounds chemistry, Manganese Compounds chemistry, Nanoparticles chemistry
- Abstract
The authors describe a method for solvent-free mechano-chemical synthesis of a bioinspired sorbent. A 2D ultra-thin carbon sheet similar to graphene oxide was prepared using a natural waste (onion sheet). The formation of 2D carbon sheets was confirmed by Raman spectroscopy, X-ray photoelectron spectroscopy and ATR-IR. The surface morphology was characterized by field emission scanning electron microscopy and high-resolution tunneling electron microscopy. The carbon sheets were decorated with crystalline MnFe
2 O4 nanoparticles by solid-state reaction at room temperature. The presence of magnetic particles in the final product was confirmed by vibrating sample magnetometry and electron microscopy. The synergistic effect of carbon sheets and MnFe2 O4 led to an enhanced sorption of arsenic species compared to bare carbon sheets or to MnFe2 O4 nanoparticles. A column was prepared for the simultaneous preconcentration and determination of trace levels of As(III) and As(V) from water samples. The preconcentration factors are between 900 and 833 for As(III) and As(V) species, respectively. The linearity of the calibration plot ranges from 0.4-10 ng mL-1 . The detection limits (at 3σ) for both As(III) and As(V) are 30 pg mL-1 . The Student's t values for the analysis of spiked samples are lower than the critical Student's t values at a 95% confidence level. The recoveries from spiked water samples range between 99 and 102.8%. Graphical abstract Schematic representation of the preparation of carbon sheets similar to graphene oxide from onion sheaths after pyrolysis at 800 °C. The prepared carbon sheet-MnFe2 O4 composite shows excellent arsenic sorption and preconcentration down to the pg mL-1 concentration.- Published
- 2019
- Full Text
- View/download PDF
33. Aflatoxin Contamination of Milk Marketed in Pakistan: A Longitudinal Study.
- Author
-
Yunus AW, Imtiaz N, Khan H, Ibrahim MNM, and Zafar Y
- Subjects
- Animals, Biological Monitoring, Pakistan, Pasteurization, Aflatoxin M1 analysis, Food Contamination analysis, Milk chemistry
- Abstract
A longitudinal one-year study was conducted to determine aflatoxin M₁ levels in different types of milk marketed in Pakistan. Processed and raw liquid milk from 21 sources, two milk powder and six tea whitener brands were sampled on monthly basis from Islamabad. The aflatoxin M₁ levels in liquid milk were lower ( p < 0.05) in summer (April to July) compared with the levels in winter (January, November and December). The mean aflatoxin M₁ levels were 254.9, 939.5, and 1535.0 ng/L in UHT, pasteurized, and raw milk, respectively (differing at p < 0.001). The mean toxin level in powdered milk after reconstitution was 522.1 ng/L. Overall, 12.9, 41.0, 91.9 and 50.0% of the UHT, pasteurized, raw and powdered milk samples, respectively, exceeded the Codex maximum tolerable limit of 500 ng of aflatoxin M₁/L. It was estimated that consumers of raw and processed milk were exposed to 11.9 and 4.5 ng aflatoxin M₁, respectively, per kg of body weight daily. The study indicates potential aflatoxin M₁ exposure risks for the consumers of raw milk in the country. The levels of the toxin though comparatively lower in milk powder, requires attention as this type of milk is consumed by infants.
- Published
- 2019
- Full Text
- View/download PDF
34. Synthesis of lignin based composites of TiO 2 for potential application as radical scavengers in sunscreen formulation.
- Author
-
Ibrahim MNM, Iqbal A, Shen CC, Bhawani SA, and Adam F
- Abstract
Titanium dioxide (TiO
2 ) is added in sunscreens due to its ability to absorb ultraviolet (UV) light. However, upon irradiation of UV light, reactive oxygen species particularly hydroxyl radical which can damage human skin will be generated. In this study, lignin/TiO2 composites were employed to quench the hydroxyl radicals generated by the TiO2 . The lignin was extracted from oil palm empty fruit bunch (OPEFB) via kraft and soda pulping processes. The kraft lignin composite was labelled as KL/TiO2 whereas the soda lignin composite was labelled as SL/TiO2 . The lignins and the composites were characterized by FTIR, UV spectroscopy,13 C NMR, SEM, EDX, and XRD. The relative hydroxyl radical production of composites and TiO2 were compared through photo-oxidation of coumarin to 7-hydroxycoumarin as a test medium. The effect of types and amounts of lignin used were studied. The KL/TiO2 composite showed the least radical production due to higher phenolic hydroxyl content of kraft lignin. The activity of the hydroxyl radicals will be quenched when it abstract hydrogen atoms from the phenolic hydroxyl groups., Competing Interests: The authors declared that they have no competing interests.- Published
- 2019
- Full Text
- View/download PDF
35. Development and characterization novel bio-adhesive for wood using kenaf core (Hibiscus cannabinus) lignin and glyoxal.
- Author
-
Hazwan Hussin M, Aziz AA, Iqbal A, Ibrahim MNM, and Latif NHA
- Subjects
- Mechanical Phenomena, Adhesives chemistry, Glyoxal chemistry, Hibiscus chemistry, Lignin chemistry, Wood
- Abstract
The recent study focused on lignin-phenol-glyoxal (LPG) as an alternative way to replace toxic formaldehyde used in commercially available wood adhesives. The concern of the uses of carcinogenic formaldehyde in wood adhesive industry has become major problem over human health, environmental and economy issues. In this study, lignin isolated from Kenaf (Hibiscus cannabinus) via soda and Kraft pulping were modified into SLPG (soda lignin-phenol-glyoxal) and KLPG (Kraft lignin-phenol-glyoxal) adhesives and were compared to phenol-formaldehyde (PF). Complementary analyses such as Fourier Transform Infrared (FTIR) spectroscopy,
1 H and13 C Nuclear Magnetic Resonance (NMR) spectroscopy, thermal stability; Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) were utilized to characterize all isolated lignin samples. The physical properties of the resins were further characterized in term of viscosity, gel time and total solid content. It was found that soda lignin comprised higher phenolic OH content and greater molecular weight compared to Kraft lignin. Various molar ratio of adhesives were applied on plywood and were mechanically tested. The 30% (w/w) SLPG has shown to have higher tensile strength and internal bonding stress at 72.08 MPa and 53.83 N mm-2 respectively to that of PF., (Copyright © 2018 Elsevier B.V. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF
36. Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.
- Author
-
Bhawani SA, Sen TS, and Ibrahim MNM
- Abstract
The molecularly imprinted polymers for gallic acid were synthesized by precipitation polymerization. During the process of synthesis a non-covalent approach was used for the interaction of template and monomer. In the polymerization process, gallic acid was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobisisobutyronitrile as an initiator and acetonitrile as a solvent. The synthesized imprinted and non-imprinted polymer particles were characterized by using Fourier-transform infrared spectroscopy and scanning electron microscopy. The rebinding efficiency of synthesized polymer particles was evaluated by batch binding assay. The highly selective imprinted polymer for gallic acid was MIPI1 with a composition (molar ratio) of 1:4:20, template: monomer: cross-linker, respectively. The MIPI1 showed highest binding efficiency (79.50%) as compared to other imprinted and non-imprinted polymers. The highly selective imprinted polymers have successfully extracted about 80% of gallic acid from spiked urine sample.
- Published
- 2018
- Full Text
- View/download PDF
37. Modification of oil palm fronds lignin by incorporation of m-cresol for improving structural and antioxidant properties.
- Author
-
Sa'don NA, Rahim AA, Ibrahim MNM, Brosse N, and Hussin MH
- Subjects
- Oxidation-Reduction, Solubility, Structure-Activity Relationship, Water chemistry, Antioxidants chemistry, Arecaceae chemistry, Cresols chemistry, Lignin chemistry
- Abstract
Lignin extracted from oil palm fronds (OPF) underwent chemical modification by incorporating m-cresol into the lignin matrix. This study reports on the physicochemical properties and antioxidant activity of unmodified autohydrolyzed ethanol organosolv lignin (AH EOL) and the modified autohydrolyzed ethanol organosolv lignin (AHC EOL). The lignin samples were analyzed by FTIR,
1 H and13 C NMR spectroscopy, 2D NMR: HSQC spectroscopy, CHN analysis, molecular weight distribution analysis; GPC and thermal analysis; DSC and TGA. The lignin modification has reduced the hydrophobicity of its complex structure by providing better quality lignin with smaller fragments and higher solubility rate in water (DAHCEOL : 42%>DAHEOL : 25%). It was revealed that the modification of lignin has improved their structural and antioxidant properties, thus venture their possible applications., (Copyright © 2017 Elsevier B.V. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF
38. The Inhibition of Hepatic and Renal Glucuronidation of p -Nitrophenol and 4-Methylumbelliferone by Oil Palm Empty Fruit Bunch Lignin and Its Main Oxidation Compounds.
- Author
-
Salleh NM, Ismail S, and Ibrahim MNM
- Abstract
Background: In order to develop oil palm empty fruit bunch (EFB) lignin as a nutraceutical and health supplement, the investigation of its potential in interacting with other drugs via inhibition of drug-metabolizing enzymes (DMEs) would ensure product safety., Objective: The study was aimed to investigate the in vitro effect of oil palm EFB lignin and its main oxidation compounds on phase II DME UDP-glucuronosyltransferases (UGTs) in rat liver and kidney microsomes., Materials and Methods: The p -nitrophenol ( p -NP) and 4-methylumbelliferone (4-MU) were employed as probe substrates in glucuronidation assays. The effect of soda oil palm EFB lignin on V
max , Km , CLint , Ki , and mode of inhibition of 4-MU glucuronidation in RLM was also determined., Results: The inhibitory potency of oil palm EFB lignin for both p -NP and 4-MU glucuronidation in rat liver microsome (RLM) and rat kidneys microsomes (RKM) was found to be in the rank order of soda > kraft > organosolv. However, the inhibitory potency of its main oxidation compounds were in the rank order of vanillin > syringaldehyde > p -hydroxybenzaldehyde. Soda oil palm EFB lignin exhibited mixed-type inhibition against 4-MU glucuronidation in RLM, showing the change in apparent Vmax and with only a minor effect on Km compared with control., Conclusions: The findings showed that effect of oil palm EFB lignin on both p -NP and 4-MU glucuronidation in RLM and RKM was enhanced by the presence of vanillin as well as flavonoids. Kinetic study showed that soda oil palm EFB lignin exhibited strong inhibition on UGT activity in RLM with mixed-type inhibition mode., Summary: The inhibitory potential of oil palm EFB lignin extracts for p -NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: soda > kraft > organosolvThe inhibitory potential of oil palm EFB lignin main oxidation compounds for p -NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: vanillin > syringaldehyde > p-hydroxybenzaldehydeResults suggested that the effect of oil palm EFB lignin on p -NP and 4-MU glucuronidation activity in both RLM and RKM was enhanced by the presence of vanillin as well as total flavonoid contentResults also suggested that oil palm EFB lignin may inhibit glucuronidation of substrate by UGT enzymes, especially UGT1A6, particularly in rat liver Abbreviations used: p -NP: p -Nitrophenol, 4-MU: 4-Methylumbelliferone, EFB: Empty fruit bunch, DME: Drug-metabolizing enzymes, UGT: UDPglucuronosyltransferase, Vmax : Maximal reaction velocity, Km : Michaelis-Menten constant, CLint: Intrinsic clearance, Ki : Dissociation constant of an inhibitor enzyme complex, 4-MUG: 4-Methylumbelliferone glucuronide, DMSO: Dimethyl sulfoxide, IC50: Half maximal inhibitory concentration, p -NPG: p -Nitrophenol glucuronide, RKM: Rat kidneys microsomes, RLM: Rat liver microsome, UDPGA: UDPglucuronic acid, TCA: trichloroacetic acid, MPA: mycophenolic acid., Competing Interests: There are no conflicts of interest.- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.