Halladjian, Sarkis, Kouřil, David, Miao, Haichao, Gröller, Eduard, Viola, Ivan, Isenberg, Tobias, Analysis and Visualization (AVIZ), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Interaction avec l'Humain (IaH), Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institute of Visual Computing & Human-Centered Technology, Vienna University of Technology (TU Wien), Institute of Computer Graphics and Algorithms, Visual Computing Center, King Abdullah University of Science and Technology, Part of this work was funded under the ILLUSTRARE grant by both the Austrian Science Fund (FWF): I 2953-N31 and the French National Research Agency (ANR): ANR-16-CE91-0011-01. The research was further supported by funding from King Abdullah University of Science and Technology (KAUST), under award number BAS/1/1680-01-01 and by funding from the ILLVISATION grant by WWTF (VRG11-010)., ANR-16-CE91-0011,ILLUSTRARE,Integrative Visual Abstraction of Molecular Data(2016), Analysis and Visualization (AViz), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Interaction avec l'Humain (IaH), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec, Technical University of Vienna [Vienna] (TU WIEN), King Abdullah University of Science and Technology (KAUST), Part of this work was funded under the ILLUSTRARE grant by both the Austrian Science Fund (FWF): I 2953-N31 and the French National Research Agency (ANR): ANR-16-CE91-0011-01. The research was further supported by funding from King Abdullah University of Science and Technology(KAUST), under award number BAS/1/1680-01-01 and by funding from the ILLVISATION grant by WWTF (VRG11-010)., Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Interaction avec l'Humain (IaH), and Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
International audience; We present Multiscale Unfolding, an interactive technique for illustratively visualizing multiple hierarchical scales of DNA in a single view, showing the genome at different scales and demonstrating how one scale spatially folds into the next. The DNA's extremely long sequential structure---arranged differently on several distinct scale levels---is often lost in traditional 3D depictions, mainly due to its multiple levels of dense spatial packing and the resulting occlusion. Furthermore, interactive exploration of this complex structure is cumbersome, requiring visibility management like cutaways. In contrast to existing temporally controlled multiscale data exploration, we allow viewers to always see and interact with any of the involved scales. For this purpose we separate the depiction into constant-scale and scale transition zones. Constant-scale zones maintain a single-scale representation, while still linearly unfolding the DNA. Inspired by illustration, scale transition zones connect adjacent constant-scale zones via level unfolding, scaling, and transparency. We thus represent the spatial structure of the whole DNA macro-molecule, maintain its local organizational characteristics, linearize its higher-level organization, and use spatially controlled, understandable interpolation between neighboring scales. We also contribute interaction techniques that provide viewers with a coarse-to-fine control for navigating within our all-scales-in-one-view representations and visual aids to illustrate the size differences. Overall, Multiscale Unfolding allows viewers to grasp the DNA's structural composition from chromosomes to the atoms, with increasing levels of "unfoldedness," and can be applied in data-driven illustration and communication.