33 results on '"Govignon-Gion A"'
Search Results
2. Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle
- Author
-
Marie-Pierre Sanchez, Armelle Govignon-Gion, Pascal Croiseau, Sébastien Fritz, Chris Hozé, Guy Miranda, Patrice Martin, Anne Barbat-Leterrier, Rabia Letaïef, Dominique Rocha, Mickaël Brochard, Mekki Boussaha, and Didier Boichard
- Subjects
Animal culture ,SF1-1100 ,Genetics ,QH426-470 - Abstract
Abstract Background Genome-wide association studies (GWAS) were performed at the sequence level to identify candidate mutations that affect the expression of six major milk proteins in Montbéliarde (MON), Normande (NOR), and Holstein (HOL) dairy cattle. Whey protein (α-lactalbumin and β-lactoglobulin) and casein (αs1, αs2, β, and κ) contents were estimated by mid-infrared (MIR) spectrometry, with medium to high accuracy (0.59 ≤ R2 ≤ 0.92), for 848,068 test-day milk samples from 156,660 cows in the first three lactations. Milk composition was evaluated as average test-day measurements adjusted for environmental effects. Next, we genotyped a subset of 8080 cows (2967 MON, 2737 NOR, and 2306 HOL) with the BovineSNP50 Beadchip. For each breed, genotypes were first imputed to high-density (HD) using HD single nucleotide polymorphisms (SNPs) genotypes of 522 MON, 546 NOR, and 776 HOL bulls. The resulting HD SNP genotypes were subsequently imputed to the sequence level using 27 million high-quality sequence variants selected from Run4 of the 1000 Bull Genomes consortium (1147 bulls). Within-breed, multi-breed, and conditional GWAS were performed. Results Thirty-four distinct genomic regions were identified. Three regions on chromosomes 6, 11, and 20 had very significant effects on milk composition and were shared across the three breeds. Other significant effects, which partially overlapped across breeds, were found on almost all the autosomes. Multi-breed analyses provided a larger number of significant genomic regions with smaller confidence intervals than within-breed analyses. Combinations of within-breed, multi-breed, and conditional analyses led to the identification of putative causative variants in several candidate genes that presented significant protein–protein interactions enrichment, including those with previously described effects on milk composition (SLC37A1, MGST1, ABCG2, CSN1S1, CSN2, CSN1S2, CSN3, PAEP, DGAT1, AGPAT6) and those with effects reported for the first time here (ALPL, ANKH, PICALM). Conclusions GWAS applied to fine-scale phenotypes, multiple breeds, and whole-genome sequences seems to be effective to identify candidate gene variants. However, although we identified functional links between some candidate genes and milk phenotypes, the causality between candidate variants and milk protein composition remains to be demonstrated. Nevertheless, the identification of potential causative mutations that underlie milk protein composition may have immediate applications for improvements in cheese-making.
- Published
- 2017
- Full Text
- View/download PDF
3. Whole-genome scan to detect quantitative trait loci associated with milk protein composition in 3 French dairy cattle breeds
- Author
-
Sanchez, M.P., Govignon-Gion, A., Ferrand, M., Gelé, M., Pourchet, D., Amigues, Y., Fritz, S., Boussaha, M., Capitan, A., Rocha, D., Miranda, G., Martin, P., Brochard, M., and Boichard, D.
- Published
- 2016
- Full Text
- View/download PDF
4. Multiple trait genetic evaluation of clinical mastitis in three dairy cattle breeds
- Author
-
A. Govignon-Gion, R. Dassonneville, G. Baloche, and V. Ducrocq
- Subjects
clinical mastitis ,genetic parameters ,genetic evaluation ,multiple trait ,udder health ,Animal culture ,SF1-1100 - Abstract
In 2010, a routine genetic evaluation on occurrence of clinical mastitis in three main dairy cattle breeds – Montbéliarde (MO), Normande (NO) and Holstein (HO) – was implemented in France. Records were clinical mastitis events reported by farmers to milk recording technicians and the analyzed trait was the binary variable describing the occurrence of a mastitis case within the first 150 days of the first three lactations. Genetic parameters of clinical mastitis were estimated for the three breeds. Low heritability estimates were found: between 2% and 4% depending on the breed. Despite its low heritability, the trait exhibits genetic variation so efficient genetic improvement is possible. Genetic correlations with other traits were estimated, showing large correlations (often>0.50, in absolute value) between clinical mastitis and somatic cell score (SCS), longevity and some udder traits. Correlation with milk yield was moderate and unfavorable (ρ=0.26 to 0.30). High milking speed was genetically associated with less mastitis in MO (ρ=−0.14) but with more mastitis in HO (ρ=0.18). A two-step approach was implemented for routine evaluation: first, a univariate evaluation based on a linear animal model with permanent environment effect led to pre-adjusted records (defined as records corrected for all non-genetic effects) and associated weights. These data were then combined with similar pre-adjusted records for others traits in a multiple trait BLUP animal model. The combined breeding values for clinical mastitis obtained are the official (published) ones. Mastitis estimated breeding values (EBV) were then combined with SCSs EBV into an udder health index, which receives a weight of 14.5% to 18.5% in the French total merit index (ISU) of the three breeds. Interbull genetic correlations for mastitis occurrence were very high (ρ=0.94) with Nordic countries, where much stricter recording systems exist reflecting a satisfactory quality of phenotypes as reported by the farmers. They were lower (around 0.80) with countries supplying SCS as a proxy for the international evaluation on clinical mastitis.
- Published
- 2016
- Full Text
- View/download PDF
5. La sélection génétique des races bovines allaitantes en France : un dispositif et des outilsinnovants au service desfilières viande
- Author
-
L. GRIFFON, P. BOULESTEIX, A. DELPEUCH, A. GOVIGNON-GION, J. GUERRIER, O. LEUDET, S. MILLER, R. SAINTILAN, E. VENOT, and T. TRIBOUT
- Subjects
Animal culture ,SF1-1100 ,Aquaculture. Fisheries. Angling ,SH1-691 - Abstract
Hérité de la loi sur l’Élevage de 1966, le dispositif génétique français a permis la mise en place d’un vaste recueil de phénotypes en ferme et en station. Toutes ces collectes ont pu être valorisées collectivement au travers de nombreuses évaluations génétiques, et notamment les évaluations nationales sur les données recueillies en ferme appelées « IBOVAL ». Ces évaluations ont évolué tant d'un point de vue méthodologique (évaluations polygéniques et maintenant génomiques) que sur l’éventail des caractères valorisés. La filière de production de viande bovine dispose aujourd’hui d’outils génétiques performants permettant d’évaluer les reproducteurs bovins allaitants, de les sélectionner sur leurs aptitudes bouchères et leur qualités maternelles en ferme et en station (contrôle individuel ou sur descendance). Le panel de caractères traités (naissance, sevrage, post-sevrage, reproduction, aptitudes bouchères) permet d’élaborer des objectifs de sélection adaptés aux orientations raciales, aux contraintes de la filière et de l’élevage. Les programmes de sélection utilisant ces outils génèrent un progrès génétique. Celui-ci est diffusé efficacement, même si la faible pénétration de l’insémination animale reste un facteur limitant. Enfin, l’arrivée de la génomique, les changements organisationnels induits par le nouveau règlement zootechnique européen et le contexte difficile de l’élevage vont entraîner des évolutions au niveau des outils et des objectifs de sélection.
- Published
- 2017
- Full Text
- View/download PDF
6. Déterminisme génétique de la composition en acides gras et protéines du lait des ruminants, et potentialités de sélection
- Author
-
D. BOICHARD, A. GOVIGNON-GION, H. LARROQUE, C. MAROTEAU, I. PALHIÈRE, G. TOSSER-KLOPP, R. RUPP, M.P. SANCHEZ, and M. BROCHARD
- Subjects
Animal culture ,SF1-1100 ,Aquaculture. Fisheries. Angling ,SH1-691 - Abstract
Cette étude présente les principaux résultats d’estimation de paramètres génétiques et de détection de QTL obtenus dans le cadre du programme PhénoFinlait sur les caractères de composition en Acides Gras (AG) et protéines du lait dans trois races bovines (Holstein, Montbéliarde et Normande), deux races ovines (Lacaune et Manech Tête Rousse) et deux races caprines (Alpine et Saanen). La composition du lait est estimée à partir de la spectrométrie dans le moyen infrarouge. Les paramètres génétiques sont estimés à partir des données de 102 000 contrôles laitiers de 22 000 vaches en première lactation, 67 000 contrôles de 20 000 brebis, et 45 000 contrôles de 13 700 chèvres. Ils sont très homogènes entre espèces et entre races. En revanche, ils dépendent beaucoup du mode d’expression des caractères, exprimés en proportion du lait ou de la matière. Exprimés en teneur dans le lait, les AG saturés présentent une héritabilité plus élevée que les insaturés chez les bovins et les ovins, mais l’écart est plus faible quand ils sont exprimés en teneur dans le gras. Chez les caprins, les estimations d’héritabilité sont plus élevées pour les caractères exprimés en teneur dans la matière grasse. Les mesures d’AG sont fortement corrélées entre stades de lactation, à l’exception du premier mois qui apparaît comme un caractère assez différent. Les corrélations génétiques sont positives entre AG saturés et entre AG insaturés. Entre AG saturés et insaturés, les corrélations sont positives pour les AG exprimés en teneur dans le lait mais négatives quand les AG sont exprimés en pourcentage de la matière grasse. Les AG saturés sont très fortement corrélés au taux butyreux du lait. Concernant les protéines, les estimations d’héritabilité sont très élevées pour la bêta-lactoglobuline, assez élevées pour les caséines, plus modérées pour l’alpha-lactalbumine. Concernant les corrélations, il existe une forte analogie entre AG et protéines. Ainsi, les caséines sont fortement corrélées entre elles et fortement liées au taux protéique. Leur corrélation avec les protéines sériques est positive quand les protéines sont exprimées en teneur dans le lait, mais très négatives quand elles sont exprimées en teneur dans les protéines. Les analyses de détection de QTL reposent sur les données de 7 800 vaches, 1 800 brebis et 2 300 chèvres génotypées avec des puces SNP pangénomiques. En moyenne, 9 QTL d’AG ont été détectés par caractère et par race bovine. Les QTL les plus importants ont été trouvés sur les chromosomes 14 (gène DGAT1), 5, 19, 27, 17, 11 et 13. On observe une forte co-localisation de QTL entre AG du même type, reflétant leur origine métabolique commune. Une fraction notable de ces QTL semble partagée entre races. 22 à 29 QTL sont détectés en moyenne pour chaque taux de protéine. Les plus significatifs se situent sur les chromosomes 6 (2 régions QTL, régions des gènes ABCG2 et des caséines), 11 (gène de la bêta-lactoglobuline) et 20 (gène GHR vers 32 Mb, mais aussi vers 58Mb). Le gène DGAT1 affecte également de nombreuses protéines exprimées en teneur dans le lait. Ces résultats indiquent que la composition fine du lait pourrait être modifiée par sélection, même si les grands équilibres entre composants peuvent difficilement être bouleversés. Il est ainsi possible d’augmenter la fraction de caséines dans les protéines. Il est aussi possible d’augmenter la fraction d’AG insaturés dans le lait, mais sans doute au prix d’une diminution du taux butyreux.
- Published
- 2014
- Full Text
- View/download PDF
7. La sélection génétique des races bovines allaitantes en France : un dispositif et des outilsinnovants au service desfilières viande
- Author
-
L. Griffon, P. Boulesteix, A. Delpeuch, O. Leudet, Thierry Tribout, J. Guerrier, A. Govignon-Gion, Eric Venot, R. Saintilan, and S. Miller
- Subjects
0301 basic medicine ,Animal breeding ,business.industry ,0402 animal and dairy science ,Genomics ,Context (language use) ,04 agricultural and veterinary sciences ,Biology ,Beef cattle ,040201 dairy & animal science ,Breed ,03 medical and health sciences ,Agricultural science ,Beef industry ,030104 developmental biology ,Livestock ,business ,Selection (genetic algorithm) - Abstract
Hérité de la loi sur l’Élevage de 1966, le dispositif génétique français a permis la mise en place d’un vaste recueil de phénotypes en ferme et en station. Toutes ces collectes ont pu être valorisées collectivement au travers de nombreuses évaluations génétiques, et notamment les évaluations nationales sur les données recueillies en ferme appelées « IBOVAL ». Ces évaluations ont évolué tant d'un point de vue méthodologique (évaluations polygéniques et maintenant génomiques) que sur l’éventail des caractères valorisés. La filière de production de viande bovine dispose aujourd’hui d’outils génétiques performants permettant d’évaluer les reproducteurs bovins allaitants, de les sélectionner sur leurs aptitudes bouchères et leur qualités maternelles en ferme et en station (contrôle individuel ou sur descendance). Le panel de caractères traités (naissance, sevrage, post-sevrage, reproduction, aptitudes bouchères) permet d’élaborer des objectifs de sélection adaptés aux orientations raciales, aux contraintes de la filière et de l’élevage. Les programmes de sélection utilisant ces outils génèrent un progrès génétique. Celui-ci est diffusé efficacement, même si la faible pénétration de l’insémination animale reste un facteur limitant. Enfin, l’arrivée de la génomique, les changements organisationnels induits par le nouveau règlement zootechnique européen et le contexte difficile de l’élevage vont entraîner des évolutions au niveau des outils et des objectifs de sélection.
- Published
- 2018
8. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals
- Author
-
Phil J. Bowman, Johanna Vilkki, Mehdi Sargolzaei, Robert D. Schnabel, Didier Boichard, Frank Panitz, Chris Hozé, Kay Uwe Götz, D. C. Purfield, Christian Bendixen, Lars-Erik Holm, Carla Hurtado Ponce, Ben J. Hayes, Alessandro Bagnato, J. J. Crowley, Cord Drögemüller, Jeremy F. Taylor, Aniek C. Bouwman, Aurélien Capitan, Jesse L. Hoff, Marie Pierre Sanchez, Thierry Tribout, Hubert Pausch, Dorian J. Garrick, Michael E. Goddard, Mekki Boussaha, Min Wang, Anna A. E. Vinkhuyzen, Ruedi Fries, Hans D. Daetwyler, Roel F. Veerkamp, Curtis P. Van Tassell, Ingolf Russ, Amanda J. Chamberlain, Reiner Emmerling, R.F. Brøndum, Mirjam Frischknecht, Vidhya Jagannathan, Marlies Dolezal, Paul Stothard, Bo Thomsen, Bertrand Servin, Simon Boitard, Donagh P. Berry, James M. Reecy, Dominique Rocha, Anna Bieber, Birgit Gredler, Johann Sölkner, Mogens Sandø Lund, Christy J. Vander Jagt, Pascal Croiseau, Goutam Sahana, Anne Barbat, Armelle Govignon-Gion, Flavio S Schenkel, Bernt Guldbrandtsen, Department of Agriculture, Food and the Marine, Ireland, Science Foundation Ireland, German Federal Ministry of Education and Research, Deutsche Forschungsgemeinschaft, Breed4Food, European Commission, Dairy Futures Cooperative Research Centre, Genome Canada project, 11/S/112, 14/IA/2576, 0315527B, PA 2789/1-1, BO-22.04-011-001-ASG-LR, Wageningen University and Research Centre (WUR), Dept Econ Dev Jobs Transport & Resources, La Trobe University, University of Melbourne, University of Guelph, Semex Alliance, Partenaires INRAE, Aarhus University [Aarhus], Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Génétique Physiologie et Systèmes d'Elevage (GenPhySE ), École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, University of Veterinary Medicine [Vienna] (Vetmeduni), Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), ETH, Dept Anim Sci, University Fed Rural Semi Arido, Natural Resources Institute Finland (LUKE), Dept Vet Med, University of California [Davis] (UC Davis), University of California-University of California, Div Anim Sci, University of Missouri [Columbia] (Mizzou), University of Missouri System-University of Missouri System, Inst Mol Biosci, Karl-Franzens-Universität [Graz, Autriche], University of Queensland [Brisbane], Qualitas AG, Allice, Inst Genet, University of Bern, Canadian Beef Breeds Council, Research Institute of Organic Agriculture - Forschungsinstitut für biologischen Landbau (FiBL), Teagasc Agriculture and Food Development Authority (Teagasc), Bavarian State Res Ctr Agr, Universität für Bodenkultur Wien [Vienne, Autriche] (BOKU), USDA-ARS : Agricultural Research Service, University of Alberta, and AgriBio
- Subjects
0301 basic medicine ,[SDV]Life Sciences [q-bio] ,Genome-wide association study ,Conserved Sequence ,condition score ,Mammals ,2. Zero hunger ,Genetics ,04 agricultural and veterinary sciences ,Body size ,plag1 ,Phenotype ,Animal Breeding & Genomics ,Cattle stature ,Quantitative Trait Loci ,selection ,Genomics ,Quantitative trait locus ,Biology ,Polymorphism, Single Nucleotide ,03 medical and health sciences ,milk-yield ,Genetic variation ,Animals ,Humans ,Life Science ,Dairy cattle ,[INFO]Computer Science [cs] ,Human height ,Fokkerij & Genomica ,Genetic Association Studies ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,missense mutation ,0402 animal and dairy science ,Genetic Variation ,Beef cattle ,weight ,040201 dairy & animal science ,Body Height ,Genetic architecture ,Breeding and genetics ,[SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal genetics ,030104 developmental biology ,human height ,Expression quantitative trait loci ,genome-wide association studies ,angus ,Cattle ,Human genome ,hereford ,Genome-Wide Association Study - Abstract
peer-reviewed H.D.D., A.J.C., P.J.B. and B.J.H. would like to acknowledge the Dairy Futures Cooperative Research Centre for funding. H.P. and R.F. acknowledge funding from the German Federal Ministry of Education and Research (BMBF) within the AgroClustEr ‘Synbreed—Synergistic Plant and Animal Breeding’ (grant 0315527B). H.P., R.F., R.E. and K.-U.G. acknowledge the Arbeitsgemeinschaft Süddeutscher Rinderzüchter, the Arbeitsgemeinschaft Österreichischer Fleckviehzüchter and ZuchtData EDV Dienstleistungen for providing genotype data. A. Bagnato acknowledges the European Union (EU) Collaborative Project LowInputBreeds (grant agreement 222623) for providing Brown Swiss genotypes. Braunvieh Schweiz is acknowledged for providing Brown Swiss phenotypes. H.P. and R.F. acknowledge the German Holstein Association (DHV) and the Confederación de Asociaciones de Frisona Española (CONCAFE) for sharing genotype data. H.P. was financially supported by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft (DFG) (grant PA 2789/1-1). D.B. and D.C.P. acknowledge funding from the Research Stimulus Fund (11/S/112) and Science Foundation Ireland (14/IA/2576). M.S. and F.S.S. acknowledge the Canadian Dairy Network (CDN) for providing the Holstein genotypes. P.S. acknowledges funding from the Genome Canada project entitled ‘Whole Genome Selection through Genome Wide Imputation in Beef Cattle’ and acknowledges WestGrid and Compute/Calcul Canada for providing computing resources. J.F.T. was supported by the National Institute of Food and Agriculture, US Department of Agriculture, under awards 2013-68004-20364 and 2015-67015-23183. A. Bagnato, F.P., M.D. and J.W. acknowledge EU Collaborative Project Quantomics (grant 516 agreement 222664) for providing Brown Swiss and Finnish Ayrshire sequences and genotypes. A.C.B. and R.F.V. acknowledge funding from the public–private partnership ‘Breed4Food’ (code BO-22.04-011- 001-ASG-LR) and EU FP7 IRSES SEQSEL (grant 317697). A.C.B. and R.F.V. acknowledge CRV (Arnhem, the Netherlands) for providing data on Dutch and New Zealand Holstein and Jersey bulls. Stature is affected by many polymorphisms of small effect in humans1. In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10−8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP–seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals.
- Published
- 2018
9. Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle
- Author
-
Sébastien Fritz, Armelle Govignon-Gion, Marie Pierre Sanchez, Mekki Boussaha, Guy Miranda, Patrice Martin, Pascal Croiseau, Rabia Letaief, A. Barbat-Leterrier, Mickael Brochard, Chris Hozé, Didier Boichard, Dominique Rocha, Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Institut de l'élevage (Institut de l'élevage), Institut de l'élevage (IDELE), ANR (ANR-08-GANI-034 Lactoscan et ANR10-GENM-0018), APIS-GENE, CASDAR, CNIEL, FranceAgriMer, France Génétique Elevage, and the French Ministry of Agriculture, Institut de l'Elevage, and Sanchez, Marie Pierre
- Subjects
Male ,0301 basic medicine ,Candidate gene ,lcsh:QH426-470 ,[SDV]Life Sciences [q-bio] ,Single-nucleotide polymorphism ,Genome-wide association study ,Breeding ,03 medical and health sciences ,Genotype ,Genetics ,Animals ,Lactation ,Beta-lactoglobulin ,Ecology, Evolution, Behavior and Systematics ,Dairy cattle ,lcsh:SF1-1100 ,Genetic association ,2. Zero hunger ,Genome ,biology ,Genetic Variation ,General Medicine ,Milk Proteins ,Breed ,lcsh:Genetics ,Milk ,030104 developmental biology ,Mutation ,biology.protein ,Cattle ,Female ,Animal Science and Zoology ,lcsh:Animal culture ,Research Article ,Genome-Wide Association Study - Abstract
Background Genome-wide association studies (GWAS) were performed at the sequence level to identify candidate mutations that affect the expression of six major milk proteins in Montbéliarde (MON), Normande (NOR), and Holstein (HOL) dairy cattle. Whey protein (α-lactalbumin and β-lactoglobulin) and casein (αs1, αs2, β, and κ) contents were estimated by mid-infrared (MIR) spectrometry, with medium to high accuracy (0.59 ≤ R2 ≤ 0.92), for 848,068 test-day milk samples from 156,660 cows in the first three lactations. Milk composition was evaluated as average test-day measurements adjusted for environmental effects. Next, we genotyped a subset of 8080 cows (2967 MON, 2737 NOR, and 2306 HOL) with the BovineSNP50 Beadchip. For each breed, genotypes were first imputed to high-density (HD) using HD single nucleotide polymorphisms (SNPs) genotypes of 522 MON, 546 NOR, and 776 HOL bulls. The resulting HD SNP genotypes were subsequently imputed to the sequence level using 27 million high-quality sequence variants selected from Run4 of the 1000 Bull Genomes consortium (1147 bulls). Within-breed, multi-breed, and conditional GWAS were performed. Results Thirty-four distinct genomic regions were identified. Three regions on chromosomes 6, 11, and 20 had very significant effects on milk composition and were shared across the three breeds. Other significant effects, which partially overlapped across breeds, were found on almost all the autosomes. Multi-breed analyses provided a larger number of significant genomic regions with smaller confidence intervals than within-breed analyses. Combinations of within-breed, multi-breed, and conditional analyses led to the identification of putative causative variants in several candidate genes that presented significant protein–protein interactions enrichment, including those with previously described effects on milk composition (SLC37A1, MGST1, ABCG2, CSN1S1, CSN2, CSN1S2, CSN3, PAEP, DGAT1, AGPAT6) and those with effects reported for the first time here (ALPL, ANKH, PICALM). Conclusions GWAS applied to fine-scale phenotypes, multiple breeds, and whole-genome sequences seems to be effective to identify candidate gene variants. However, although we identified functional links between some candidate genes and milk phenotypes, the causality between candidate variants and milk protein composition remains to be demonstrated. Nevertheless, the identification of potential causative mutations that underlie milk protein composition may have immediate applications for improvements in cheese-making. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0344-z) contains supplementary material, which is available to authorized users.
- Published
- 2017
10. MOESM5 of Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle
- Author
-
Sanchez, Marie-Pierre, Govignon-Gion, Armelle, Croiseau, Pascal, Fritz, Sébastien, Hozé, Chris, Miranda, Guy, Martin, Patrice, Barbat-Leterrier, Anne, Letaïef, Rabia, Rocha, Dominique, Brochard, Mickaël, Mekki Boussaha, and Boichard, Didier
- Abstract
Additional file 5: Table S5. Functional annotations of variants included within confidence intervals (± 100 kb) of the 34 QTL for each trait in the three within-breed Montbéliarde (MON), Normande (NOR), and Holstein (HOL) or in multi-breed analyses.
- Published
- 2017
- Full Text
- View/download PDF
11. La sélection génétique des races bovines allaitantes en France : Un dispositif et des outils innovants au service des filières viande
- Author
-
Griffon, L., Boulesteix, P., Delpeuch, A., Govignon-Gion, Armelle, Guerrier, J., Leudet, Olivier, Miller, S., Saintilan, Romain, Venot, Eric, Tribout, Thierry, Institut de l'élevage (IDELE), Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Jacques Agabriel, Gilles Renand, René Baumont, and Institut de l'Elevage
- Subjects
viande bovine ,[SDV]Life Sciences [q-bio] ,génétique ,sélection ,production ,insémination artificielle - Abstract
Hérité de la loi sur l’Élevage de 1966, le dispositif génétique français a permis la mise en place d’un vaste recueil de phénotypes en ferme et en station. Toutes ces collectes ont pu être valorisées collectivement au travers de nombreuses évaluations génétiques, et notamment les évaluations nationales sur les données recueillies en ferme appelées « IBOVAL ». Ces évaluations ont évolué tant d'un point de vue méthodologique (évaluations polygéniques et maintenant génomiques) que sur l’éventail des caractères valorisés. La filière de production de viande bovine dispose aujourd’hui d’outils génétiques performants permettant d’évaluer les reproducteurs bovins allaitants, de les sélectionner sur leurs aptitudes bouchères et leur qualités maternelles en ferme et en station (contrôle individuel ou sur descendance). Le panel de caractères traités (naissance, sevrage, post-sevrage, reproduction, aptitudes bouchères) permet d’élaborer des objectifs de sélection adaptés aux orientations raciales, aux contraintes de la filière et de l’élevage. Les programmes de sélection utilisant ces outils génèrent un progrès génétique. Celui-ci est diffusé efficacement, même si la faible pénétration de l’insémination animale reste un facteur limitant. Enfin, l’arrivée de la génomique, les changements organisationnels induits par le nouveau règlement zootechnique européen et le contexte difficile de l’élevage vont entraîner des évolutions au niveau des outils et des objectifs de sélection., The French genetic improvement organisation of beef cattle, the legacy of the French Livestock act of 1966, produces a collection of a wide range of phenotypes obtained on farm and in testing stations. With these, numerous genetic evaluations were developed, in particular evaluations based on data collected on farms called “IBOVAL”. The methodology used (with recently the inclusion of genomic information) as well as the number of traits evaluated have evolved with time. Today, adequate genetic tools are available in France to predict genetic values of breeding animals, to select them on their fattening abilities or their maternal abilities. The range of traits (at birth, weaning, post-weaning as well as reproductive and fattening abilities) allows the development of breeding goals adapted to the farmers’ needs, the breed objectives and the context of the beef industry. The selection programs using these tools do generate genetic gains. The dissemination of these gains is efficient even though the beef cattle sector has a low rate of insemination. With the introduction of genomics and the organisational changes resulting from the new European regulation as well as the difficult situation of the beef industry, these genetic tools and breeding goals will continue to evolve.
- Published
- 2017
12. La sélection génétique des races bovines allaitantes en France : un dispositif et des outilsinnovants au service desfilières viande
- Author
-
GRIFFON, L., primary, BOULESTEIX, P., additional, DELPEUCH, A., additional, GOVIGNON-GION, A., additional, GUERRIER, J., additional, LEUDET, O., additional, MILLER, S., additional, SAINTILAN, R., additional, VENOT, E., additional, and TRIBOUT, T., additional
- Published
- 2018
- Full Text
- View/download PDF
13. Identification of candidate causal variants underlying QTL in dairy cattle through GWAS and Bayesian approach at the sequence level
- Author
-
Didier Boichard, Marie Pierre Sanchez, Anne Barbat, mekki boussaha, Thierry Tribout, Rachel Lefebvre, Sebastien Fritz, Romain Saintilan, Chris Hoze, Armelle Govignon-Gion, Pascal Croiseau, Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Genetics Team, Union nationale des coopératives d’élevage et d’insémination animale (UNCEIA), and ANR - Apisgene PhenoFinLait / Lactoscan et CartoSeq
- Subjects
séquence du génome ,bovin laitier ,analyse d'association ,composition du lait ,séquence du génome complet ,[SDV]Life Sciences [q-bio] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2016
14. French genomic experience: genomics for all ruminant species
- Author
-
Barbat, Anne, Boichard, Didier, Croiseau, Pascal, Ducrocq, Vincent, Lefebvre, Rachel, Phocas, Florence, Sanchez, Marie Pierre, Tribout, Thierry, Vinet, Aurélie, Fouilloux, Marie-Noëlle, Govignon Gion, Armelle, Launay, Amandine, Promp, Julie, Barbat, Marine, Baur, Aurélia, Hoze, Chris, Fritz, Sébastien, Saintilan, Romain, Carillier, Céline, Larroque, Hélène, Legarra, Andres, Palhière, Isabelle, Robert Granié, Céline, Rupp, Rachel, Tortereau, Flavie, Astruc, J.M., Clément, V., Loywyck, V., Boulesteix, P., Mattalia, Sophie, and Venot, Eric
- Subjects
sélection génomique ,ruminants - Published
- 2016
15. Multiple trait genetic evaluation of clinical mastitis in French dairy cattle breeds
- Author
-
Vincent Ducrocq, Romain Dassonneville, G. Baloche, A. Govignon-Gion, Génétique Animale et Biologie Intégrative (GABI), and Institut National de la Recherche Agronomique (INRA)-AgroParisTech
- Subjects
0301 basic medicine ,Veterinary medicine ,[SDV]Life Sciences [q-bio] ,Longevity ,clinical mastitis ,Biology ,Breeding ,multiple trait ,SF1-1100 ,genetic evaluation ,Milking ,03 medical and health sciences ,Mammary Glands, Animal ,Genetic variation ,medicine ,genetic parameters ,Animals ,Lactation ,Udder ,Mastitis, Bovine ,Dairy cattle ,2. Zero hunger ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,Body Weight ,0402 animal and dairy science ,Genetic Variation ,udder health ,04 agricultural and veterinary sciences ,Heritability ,medicine.disease ,040201 dairy & animal science ,Breed ,Mastitis ,Animal culture ,[SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal genetics ,030104 developmental biology ,medicine.anatomical_structure ,Milk ,Phenotype ,Trait ,Linear Models ,Animal Science and Zoology ,Cattle ,Female ,France - Abstract
International audience; In 2010, a routine genetic evaluation on occurrence of clinical mastitis in three main dairy cattle breeds-- Montbéliarde (MO), Normande (NO) and Holstein (HO)--was implemented in France. Records were clinical mastitis events reported by farmers to milk recording technicians and the analyzed trait was the binary variable describing the occurrence of a mastitis case within the first 150 days of the first three lactations. Genetic parameters of clinical mastitis were estimated for the three breeds. Low heritability estimates were found: between 2% and 4% depending on the breed. Despite its low heritability, the trait exhibits genetic variation so efficient genetic improvement is possible. Genetic correlations with other traits were estimated, showing large correlations (often>0.50, in absolute value) between clinical mastitis and somatic cell score (SCS), longevity and some udder traits. Correlation with milk yield was moderate and unfavorable (ρ=0.26 to 0.30). High milking speed was genetically associated with less mastitis in MO (ρ=-0.14) but with more mastitis in HO (ρ=0.18). A two-step approach was implemented for routine evaluation: first, a univariate evaluation based on a linear animal model with permanent environment effect led to pre-adjusted records (defined as records corrected for all non-genetic effects) and associated weights. These data were then combined with similar pre-adjusted records for others traits in a multiple trait BLUP animal model. The combined breeding values for clinical mastitis obtained are the official (published) ones. Mastitis estimated breeding values (EBV) were then combined with SCSs EBV into an udder health index, which receives a weight of 14.5% to 18.5% in the French total merit index (ISU) of the three breeds. Interbull genetic correlations for mastitis occurrence were very high (ρ=0.94) with Nordic countries, where much stricter recording systems exist reflecting a satisfactory quality of phenotypes as reported by the farmers. They were lower (around 0.80) with countries supplying SCS as a proxy for the international evaluation on clinical mastitis.
- Published
- 2016
16. Whole-genome scan to detect quantitative trait loci associated with milk protein composition in 3 French dairy cattle breeds
- Author
-
Y. Amigues, M. Ferrand, Didier Boichard, D. Pourchet, Mekki Boussaha, Mickael Brochard, Marie Pierre Sanchez, Aurélien Capitan, Sébastien Fritz, Dominique Rocha, Guy Miranda, M. Gelé, Patrice Martin, Armelle Govignon-Gion, Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Institut de l'élevage (IDELE), Entreprise de Conseil en Elevage Doubs, Laboratoire d'Analyse Génétique pour les Espèces Animales (LABOGENA), Institut National de la Recherche Agronomique (INRA), Allice, ANR Apisgene Lactoscan - Phenofinlait, Institut de l'Elevage, and LABOGENA DNA
- Subjects
Male ,0301 basic medicine ,Linkage disequilibrium ,Genotype ,[SDV]Life Sciences [q-bio] ,Quantitative Trait Loci ,Context (language use) ,Breeding ,Biology ,Quantitative trait locus ,Polymorphism, Single Nucleotide ,03 medical and health sciences ,Genetic linkage ,milk protein ,protéine du lait ,Genetic variation ,Genetics ,Animals ,protéines du lait ,Dairy cattle ,2. Zero hunger ,qtl ,0402 animal and dairy science ,dairy cattle ,food and beverages ,04 agricultural and veterinary sciences ,Milk Proteins ,040201 dairy & animal science ,Breed ,Milk ,030104 developmental biology ,bovin laitier ,Cattle ,Female ,Animal Science and Zoology ,Food Science - Abstract
In the context of the PhénoFinLait project, a genome-wide analysis was performed to detect quantitative trait loci (QTL) that affect milk protein composition estimated using mid-infrared spectrometry in the Montbéliarde (MO), Normande (NO), and Holstein (HO) French dairy cattle breeds. The 6 main milk proteins (α-lactalbumin, β-lactoglobulin, and αS1-, αS2-, β-, and κ-caseins) expressed as grams per 100g of milk (% of milk) or as grams per 100g of protein (% of protein) were estimated in 848,068 test-day milk samples from 156,660 cows. Genotyping was performed for 2,773 MO, 2,673 NO, and 2,208 HO cows using the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). Individual test-day records were adjusted for environmental effects and then averaged per cow to define the phenotypes analyzed. Quantitative trait loci detection was performed within each breed using a linkage disequilibrium and linkage analysis approach. A total of 39 genomic regions distributed on 20 of the 29 Bos taurus autosomes (BTA) were significantly associated with milk protein composition at a genome-wide level of significance in at least 1 of the 3 breeds. The 9 most significant QTL were located on BTA2 (133 Mbp), BTA6 (38, 47, and 87 Mbp), BTA11 (103 Mbp), BTA14 (1.8 Mbp), BTA20 (32 and 58 Mbp), and BTA29 (8 Mbp). The BTA6 (87 Mbp), BTA11, and BTA20 (58 Mbp) QTL were found in all 3 breeds, and they had highly significant effects on κ-casein, β-lactoglobulin, and α-lactalbumin, expressed as a percentage of protein, respectively. Each of these QTL explained between 13% (BTA14) and 51% (BTA11) of the genetic variance of the trait. Many other QTL regions were also identified in at least one breed. They were located on 14 additional chromosomes (1, 3, 4, 5, 7, 15, 17, 19, 21, 22, 24, 25, 26, and 27), and they explained 2 to 8% of the genetic variance of 1 or more protein composition traits. Concordance analyses, performed between QTL status and sequence-derived polymorphisms from 13 bulls, revealed previously known causal polymorphisms in LGB (BTA11) and GHR (BTA20 at 32 Mbp) and excluded some other previously described mutations. These results constitute a first step in identifying causal mutations and using routinely collected mid-infrared predictions in future genomic selection programs to improve bovine milk protein composition.
- Published
- 2016
17. Paramètres génétiques du taux de calcium, prédit à partir des spectres moyen infrarouge, dans le lait des 3 principales races bovines laitières françaises
- Author
-
Govignon-Gion, Armelle, Minery, Stephanie, Wald, Marine, Brochard, Mickael, Gelé, M., Rouillé, B., Boichard, Didier, Ferrand-Calmels, M., Hurtaud, Catherine, Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Institut de l'Elevage, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage [Rennes] (PEGASE), AGROCAMPUS OUEST-Institut National de la Recherche Agronomique (INRA), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Institut de l'élevage (IDELE), AGROCAMPUS OUEST, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA)
- Subjects
paramètres génétiques ,bovin ,calcium ,[SDV]Life Sciences [q-bio] ,composition du lait ,genetic variance ,paramètre génétique ,ComputingMilieux_MISCELLANEOUS - Abstract
Paramètres génétiques du taux de calcium, prédit à partir des spectres moyen infrarouge, dans le lait des 3 principales races bovines laitières françaises. 22. Rencontres autour des Recherches sur les Ruminants
- Published
- 2015
18. Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle
- Author
-
Sanchez, Marie-Pierre, primary, Govignon-Gion, Armelle, additional, Croiseau, Pascal, additional, Fritz, Sébastien, additional, Hozé, Chris, additional, Miranda, Guy, additional, Martin, Patrice, additional, Barbat-Leterrier, Anne, additional, Letaïef, Rabia, additional, Rocha, Dominique, additional, Brochard, Mickaël, additional, Boussaha, Mekki, additional, and Boichard, Didier, additional
- Published
- 2017
- Full Text
- View/download PDF
19. Identification de régions chromosomiques affectant la santé de la mamelle par analyse d’association sur la séquence du génome dans les races Holstein, Montbéliarde et Normande
- Author
-
Barbat, Marine, Govignon-Gion, Armelle, Launay, Amandine, Tribout, Thierry, Lefebvre, Rachel, Allice, Génétique Animale et Biologie Intégrative (GABI), AgroParisTech-Institut National de la Recherche Agronomique (INRA), and Institut de l'élevage (IDELE)
- Subjects
[SDV]Life Sciences [q-bio] ,séquence ,association ,ComputingMilieux_MISCELLANEOUS ,mamelle - Abstract
National audience
- Published
- 2015
20. Meta-analysis of GWAS of bovine stature with >50,000 animals imputed to whole-genome sequence
- Author
-
Bouwman, Aniek C, Pausch, Hubert, Govignon-Gion, A, Hoze, C, Sanchez, M P, Boussaha, M, Boichard, D, Sahana, Goutam, Brøndum, Rasmus Froberg, Guldbrandtsen, Bernt, Lund, Mogens Sandø, Vilkki, Johanna, Sargolzaei, M, Schenkel, F S, Taylor, J F, Hoff, J F, Schnabel, Robert D, Veerkamp, Roel, Goddard, Michael E, and Hayes, Benjamin J
- Published
- 2015
21. Genetic parameters for milk calcium content predicted by MIR spectroscopy in three French breeds
- Author
-
Govignon-Gion, Armelle, Minery, Stephanie, Wald, Marine, Brochard, Mickael, Gelé, M., Rouillé, B., Boichard, Didier, Ferrand-Calmels, M., Hurtaud, Catherine, Génétique Animale et Biologie Intégrative (GABI), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Institut de l’Élevage, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage [Rennes] (PEGASE), AGROCAMPUS OUEST-Institut National de la Recherche Agronomique (INRA), PhenoFinLait, Institut National de la Recherche Agronomique (INRA)-AgroParisTech, AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA), and European Federation of Animal Science (EAAP). INT.
- Subjects
bovin ,calcium ,[SDV]Life Sciences [q-bio] ,composition du lait - Abstract
International audience; The aims of this study were to develop an equation to estimate calcium content (Ca) in bovine milk, using mid-infrared (MIR) spectroscopy and to determine Ca genetic parameters. To develop the Ca equation, 300 milk samples were selected from PhénoFinlait milkbank to cover a large range of breeding practices (3 breeds, different areas, seasons, lactation numbers, diets, etc.). Those samples were both analyzed by MIRand by atomic absorption spectrometry which is the reference method for Ca measurement. 210 out of the 300 samples were used as calibration dataset and the remaining 90 were used as independent validation set. The determination coefficient of validation of the equation (Rv2) reached 0.79 and its residual standard deviation (sy,x) was 4%. Genetic parameters of Ca were estimated for the three French major dairy breeds (Prim’holstein (HOL), Montbéliarde (MON), Normande (NOR)). Ca equation was applied to 35,326 spectral records collected from 6,723 first lactation HOL cows, 28,508 spectral records collected from 5,590 first lactation NOR cows and 50,505 spectral records collected from 6,330 first lactation MON cows. Three different models were used to estimate genetic parameters (1) an individual test-day repeatability model,(2) a lactation model, where the trait is the average of test-day records and (3) a test-day random regression model. The heritabilities of Ca estimated with lactation model were 0.44 in HOL, 0.74 in NOR and 0.70 in MON. The coefficients of genetic variation were 3.6, 4.3 and 4.2 in HOL, NOR and MON respectively. And data from more than 8,000 cows in the 3 breeds will be used for the next step: analysis of genomicsequences to identify causal mutations for Ca.
- Published
- 2015
22. Identification of causal variants for milk protein composition using sequence data in dairy cattle
- Author
-
Marie Pierre Sanchez, Armelle Govignon-Gion, Pascal Croiseau, Anne Barbat, Gelé, M., Sebastien Fritz, Guy Miranda, Patrice Martin, mekki boussaha, Mickael Brochard, Didier Boichard, Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Institut de l'élevage (IDELE), Union nationale des coopératives d’élevage et d’insémination animale (UNCEIA), Phenofinlait (ANR + Apisgene), Cartoseq (ANR + Apisgene), and European Federation of Animal Science (EAAP). INT.
- Subjects
séquence du génome ,bovin ,protéine du lait ,qtl ,[SDV]Life Sciences [q-bio] ,protéines du lait ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2015
23. Using genomes sequences to identify causal variants for milk fatty acids in dairy cattle
- Author
-
Armelle Govignon-Gion, Marie Pierre Sanchez, Pascal Croiseau, Anne Barbat, Sebastien Fritz, mekki boussaha, Mickael Brochard, Didier Boichard, Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Allice, Institut de l'élevage (IDELE), PhenoFinlait (ANR + Apisgene) / Cartoseq (ANR + Apisgene), and European Federation of Animal Science (EAAP). INT.
- Subjects
bovin ,acide gras ,séquence génomique ,qtl ,[SDV]Life Sciences [q-bio] ,acides gras ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2015
24. Meta-analysis of GWAS of bovine stature with >50,000 animals imputed to whole-genome sequence
- Author
-
Bouwman, A.C., Pausch, H., Govignon-Gion, Armelle, Hoze, Chris, Sanchez, Marie Pierre, Boussaha, Mekki, Boichard, Didier, Sahana, G., Brondum, R.F., Guldbrandtsen, B., Lund, M.S., Vilkki, J., Sargolzaei, M., Schenkel, F.S., Taylor, J.F., Hoff, J.L., Schnabel, R.D., Veerkamp, R.F., Goddard, M.E., and Hayes, B.J.
- Subjects
bovin ,qtl ,stature ,meta-analyse ,méta analyse - Published
- 2015
25. Déterminisme génétique de la composition en acides gras et protéines du lait des ruminants et potentialités de sélection
- Author
-
Rachel Rupp, Isabelle Palhiere, Mickael Brochard, A. Govignon-Gion, Gwenola Tosser-Klopp, Didier Boichard, Helene Larroque, Marie Pierre Sanchez, C. Maroteau, Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Génétique Physiologie et Systèmes d'Elevage (GenPhySE ), École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Institut de l'élevage (IDELE), Projet PhenoFinlait (Apisgene, ANR Lactoscan), Mickaël Brochard, Didier Boichard, Philippe Brunschwig, Jean-Louis Peyraud, AgroParisTech-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-École nationale supérieure agronomique de Toulouse [ENSAT], and Institut de l'Elevage
- Subjects
2. Zero hunger ,0303 health sciences ,bovin ,acide gras ,[SDV]Life Sciences [q-bio] ,0402 animal and dairy science ,04 agricultural and veterinary sciences ,16. Peace & justice ,040201 dairy & animal science ,lait ,03 medical and health sciences ,ovin ,caprin ,acides gras ,protéines ,protéine ,030304 developmental biology - Abstract
Cette étude présente les principaux résultats d’estimation de paramètres génétiques et de détection de QTL obtenus dans le cadre du programme PhénoFinlait sur les caractères de composition en Acides Gras (AG) et protéines du lait dans trois races bovines (Holstein, Montbéliarde et Normande), deux races ovines (Lacaune et Manech Tête Rousse) et deux races caprines (Alpine et Saanen). La composition du lait est estimée à partir de la spectrométrie dans le moyen infrarouge. Les paramètres génétiques sont estimés à partir des données de 102 000 contrôles laitiers de 22 000 vaches en première lactation, 67 000 contrôles de 20 000 brebis, et 45 000 contrôles de 13 700 chèvres. Ils sont très homogènes entre espèces et entre races. En revanche, ils dépendent beaucoup du mode d’expression des caractères, exprimés en proportion du lait ou de la matière. Exprimés en teneur dans le lait, les AG saturés présentent une héritabilité plus élevée que les insaturés chez les bovins et les ovins, mais l’écart est plus faible quand ils sont exprimés en teneur dans le gras. Chez les caprins, les estimations d’héritabilité sont plus élevées pour les caractères exprimés en teneur dans la matière grasse. Les mesures d’AG sont fortement corrélées entre stades de lactation, à l’exception du premier mois qui apparaît comme un caractère assez différent. Les corrélations génétiques sont positives entre AG saturés et entre AG insaturés. Entre AG saturés et insaturés, les corrélations sont positives pour les AG exprimés en teneur dans le lait mais négatives quand les AG sont exprimés en pourcentage de la matière grasse. Les AG saturés sont très fortement corrélés au taux butyreux du lait. Concernant les protéines, les estimations d’héritabilité sont très élevées pour la bêta-lactoglobuline, assez élevées pour les caséines, plus modérées pour l’alpha-lactalbumine. Concernant les corrélations, il existe une forte analogie entre AG et protéines. Ainsi, les caséines sont fortement corrélées entre elles et fortement liées au taux protéique. Leur corrélation avec les protéines sériques est positive quand les protéines sont exprimées en teneur dans le lait, mais très négatives quand elles sont exprimées en teneur dans les protéines. [br/] Les analyses de détection de QTL reposent sur les données de 7 800 vaches, 1 800 brebis et 2 300 chèvres génotypées avec des puces SNP pangénomiques. En moyenne, 9 QTL d’AG ont été détectés par caractère et par race bovine. Les QTL les plus importants ont été trouvés sur les chromosomes 14 (gène DGAT1), 5, 19, 27, 17, 11 et 13. On observe une forte co-localisation de QTL entre AG du même type, reflétant leur origine métabolique commune. Une fraction notable de ces QTL semble partagée entre races. 22 à 29 QTL sont détectés en moyenne pour chaque taux de protéine. Les plus significatifs se situent sur les chromosomes 6 (2 régions QTL, régions des gènes ABCG2 et des caséines), 11 (gène de la bêta-lactoglobuline) et 20 (gène GHR vers 32 Mb, mais aussi vers 58Mb). Le gène DGAT1 affecte également de nombreuses protéines exprimées en teneur dans le lait. [br/] Ces résultats indiquent que la composition fine du lait pourrait être modifiée par sélection, même si les grands équilibres entre composants peuvent difficilement être bouleversés. Il est ainsi possible d’augmenter la fraction de caséines dans les protéines. Il est aussi possible d’augmenter la fraction d’AG insaturés dans le lait, mais sans doute au prix d’une diminution du taux butyreux., This study presents the main genetic results obtained from the PhénoFinlait project with regards to genetic parameters and QTL detection for milk composition in fatty acids (FA) and proteins in three dairy cattle breeds (Montbeliarde, Normande, and Holstein), two goat breeds (Alpine and Saanen) and two sheep breeds (Lacaune and Manech Tete Rousse). Milk composition was estimated from midinfra red spectrometry. Genetic parameters were estimated from about 102,000 test-day records from 22,000 cows in first lactation, 67,000 records from 20,000 ewes and 45,000 records from 13,700 goats. Genetic parameter results were very homogeneous across species and breeds. They were found to be sensitive to the mode of expression of the traits, in % of milk or in % of fat or protein. Expressed in % of milk, test-day saturated FA (SAT) had higher heritability estimates than unsaturated FA (UNSAT) but this difference was smaller when traits were in % of fat. In goats, the results were markedly different with higher heritability estimates found for traits expressed in % of fat. FA measurements were highly genetically correlated across different stages of lactation except in the beginning of the lactation. Genetic correlation estimates were found to be positive across saturated FA, and also across unsaturated FA. Between saturated and unsaturated FA, correlation estimates were positive when FA were expressed in % milk but negative when FA were expressed in % fat. Saturated FA were strongly correlated with fat content. With regards to proteins, heritability estimates were very high for beta-lactoglobulin, moderate to high for caseins, moderate for alpha-lactalbumin. Correlation pattern showed a strong similarity between FA and proteins. Indeed, caseins were strongly correlated with each other and with protein content. Their correlation with whey proteins was positive or very negative, whether proteins were expressed in % milk or in % proteins. [br/] QTL detection analyses were based on pangenomic genotyping data of 7800 cows, 1800 ewes, and 2300 goats. On average, 9 QTL were detected per FA trait and cattle breed. The most important QTL were found on chromosome 14 (DGAT1 gene), 5, 19, 27, 17, 11, and 13. A strong co-location of QTL was observed for FA sharing a common metabolic origin. A large proportion of the QTL seems to be shared across breeds. Twenty-two to 29 QTL were detected for each protein. The most significant QTL were found on chromosome 6 (2 regions close to ABCG2 gene and to casein cluster), 11 (beta-lactoglobulin gene), and 20 (2 regions, around GHR gene and around 58 Mb). The DGAT1 gene (BTA14, around 1.8 Mb) was also found to affect many proteins when expressed in % of milk. [br/] These results show that milk composition in FA or proteins can be significantly modified by selection, even if the major characteristics cannot be changed. For instance, it is possible to increase the casein percentage in total proteins. It is also possible to increase the unsaturated FA fraction in fat, but at the expense of a decrease in fat content in milk.
- Published
- 2014
26. Multiple trait genetic evaluation of clinical mastitis in three dairy cattle breeds
- Author
-
Govignon-Gion, A., primary, Dassonneville, R., additional, Baloche, G., additional, and Ducrocq, V., additional
- Published
- 2016
- Full Text
- View/download PDF
27. Whole genome scan to detect QTL for major milk proteins in three French dairy cattle breeds
- Author
-
Sanchez, Marie Pierre, Govignon-Gion, Armelle, Ferrand, Marion, Gelé, M., Pourchet, D., Rossignol, Marie-Noelle, Fritz, Sebastien, Miranda, Guy, Martin, Patrice, Brochard, Mickael, Boichard, Didier, Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Institut de l'Elevage, Doubs-Territoire de Belfort, ECEL, Laboratoire d'Analyse Génétique pour les Espèces Animales (LABOGENA), Institut National de la Recherche Agronomique (INRA), and Institut de l'élevage (IDELE)
- Subjects
[SDV]Life Sciences [q-bio] - Abstract
absent
- Published
- 2013
28. Genetic evaluation of mastitis in France
- Author
-
Govignon-Gion, Armelle, Dassonneville, Romain, Baloche, Guillaume, Ducrocq, Vincent, Génétique Animale et Biologie Intégrative (GABI), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Station d'Amélioration Génétique des Animaux (SAGA), and Institut National de la Recherche Agronomique (INRA)
- Subjects
[SDV]Life Sciences [q-bio] ,mastite ,évaluation génétique ,france ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2012
29. Detection of QTL affecting milk fatty acid composition in three French dairy cattle breeds
- Author
-
Govignon-Gion, Armelle, Fritz, S., Larroque, Helene, Brochard, M., Chantry, Céline, Lahalle, F., and Boichard, Didier
- Subjects
QTL ,Dairy cattle breed ,Milk ,Fatty acid ,Concentration ,Detection - Published
- 2012
30. Genetic evaluation of mastitis in dairy cattle in France
- Author
-
Govignon-Gion, Armelle, Dassonneville, Romain, Baloche, Guillaume, Ducrocq, Vincent, Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, and AgroParisTech-Institut National de la Recherche Agronomique (INRA)
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,clinical mastitis ,somatic cell ,genetic parameter ,genetic evaluation ,total merit index - Abstract
Chantier qualité GA; Genetic parameters of clinical mastitis were estimated for the three main French dairy breeds: Holstein, Montbéliarde and Normande. Records were clinical mastitis events reported by farmers to milk recording technicians and the analyzed trait was the binary variable describing the occurrence of a mastitis case within the first 150 days oflactation. Low heritability estimates were found: between 2 and 4 % depending on the breed but the trait has significant genetic variance despite its low heritability: efficient genetic improvement is possible. Genetic correlations with other traits were estimated, showing large correlations (often >0.50, in absolute value) between clinical mastitis and somatic cell score (SCS), longevity and some udder traits. Correlation with milk yield was moderately large and unfavorable (ρ=0.26 to 0.30). High milking speed was genetically associated with less mastitis in Montbéliarde (ρ=-0.14) but with more mastitis in Holstein (ρ=0.18). Interbull genetic correlations are very high with Nordic countries, where much stricter recording systems exist (ρ=0.94). They were lower (around 0.80) with countries supplying SCS as a proxy for the international evaluation on clinical mastitis. Clinical mastitis has been included since 2010 in routine evaluations using a multiple trait animal model. Mastitis estimated breeding values (EBV) are combined with somatic cell scores EBV into an udder health index which receives a weight of 14.5% to 18.5% in the new French Total Merit Index (ISU) of the three breeds.
- Published
- 2012
31. Overview and results of PhenoFinlait, a large scaleproject for milk fat and protein composition analysis
- Author
-
Boichard, Didier, Martin, Patrice, Miranda, Guy, Ferrand, M., Brunschwig, P., Govignon-Gion, Armelle, Larroque, Helene, Rupp, Rachel, Palhière, Isabelle, Chantry-Darmon, Céline, Lagriffoul, G., Lahalle , F., Fritz, S., Brochard, M., Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Institut de l'élevage (IDELE), Station d'Amélioration Génétique des Animaux (SAGA), Institut National de la Recherche Agronomique (INRA), Laboratoire d'Analyse Génétique pour les Espèces Animales (LABOGENA), Centre National Interprofessionnel de l'Economie Laitière (CNIEL), Union nationale des coopératives d’élevage et d’insémination animale (UNCEIA), and PhenoFinlait - Lactoscan ANR Apisgene
- Subjects
bovin laitier ,acide gras essentiel ,[SDV]Life Sciences [q-bio] ,spectre infrarouge ,acides gras ,composition du lait ,spectre moyen infra rouge ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2012
32. Bos taurus strain:dairy beef (cattle): 1000 Bull Genomes Run 2, Bovine Whole Genome Sequence
- Author
-
Bouwman, A.C., Daetwyler, H.D., Chamberlain, Amanda J., Ponce, Carla Hurtado, Sargolzaei, Mehdi, Schenkel, Flavio S., Sahana, Goutam, Govignon-Gion, Armelle, Boitard, Simon, Dolezal, Marlies, Pausch, Hubert, Brøndum, Rasmus F., Bowman, Phil J., Thomsen, Bo, Guldbrandtsen, Bernt, Lund, Mogens S., Servin, Bertrand, Garrick, Dorian J., Reecy, James M., Vilkki, Johanna, Bagnato, Alessandro, Wang, Min, Hoff, Jesse L., Schnabel, Robert D., Taylor, Jeremy F., Vinkhuyzen, Anna A.E., Panitz, Frank, Bendixen, Christian, Holm, Lars-Erik, Gredler, Birgit, Hozé, Chris, Boussaha, Mekki, Sanchez, Marie Pierre, Rocha, Dominique, Capitan, Aurelien, Tribout, Thierry, Barbat, Anne, Croiseau, Pascal, Drögemüller, Cord, Jagannathan, Vidhya, Vander Jagt, Christy, Crowley, John J., Bieber, Anna, Purfield, Deirdre C., Berry, Donagh P., Emmerling, Reiner, Götz, Kay Uwe, Frischknecht, Mirjam, Russ, Ingolf, Sölkner, Johann, van Tassell, Curtis P., Fries, Ruedi, Stothard, Paul, Veerkamp, R.F., Boichard, Didier, Goddard, Mike E., Hayes, Ben J., Bouwman, A.C., Daetwyler, H.D., Chamberlain, Amanda J., Ponce, Carla Hurtado, Sargolzaei, Mehdi, Schenkel, Flavio S., Sahana, Goutam, Govignon-Gion, Armelle, Boitard, Simon, Dolezal, Marlies, Pausch, Hubert, Brøndum, Rasmus F., Bowman, Phil J., Thomsen, Bo, Guldbrandtsen, Bernt, Lund, Mogens S., Servin, Bertrand, Garrick, Dorian J., Reecy, James M., Vilkki, Johanna, Bagnato, Alessandro, Wang, Min, Hoff, Jesse L., Schnabel, Robert D., Taylor, Jeremy F., Vinkhuyzen, Anna A.E., Panitz, Frank, Bendixen, Christian, Holm, Lars-Erik, Gredler, Birgit, Hozé, Chris, Boussaha, Mekki, Sanchez, Marie Pierre, Rocha, Dominique, Capitan, Aurelien, Tribout, Thierry, Barbat, Anne, Croiseau, Pascal, Drögemüller, Cord, Jagannathan, Vidhya, Vander Jagt, Christy, Crowley, John J., Bieber, Anna, Purfield, Deirdre C., Berry, Donagh P., Emmerling, Reiner, Götz, Kay Uwe, Frischknecht, Mirjam, Russ, Ingolf, Sölkner, Johann, van Tassell, Curtis P., Fries, Ruedi, Stothard, Paul, Veerkamp, R.F., Boichard, Didier, Goddard, Mike E., and Hayes, Ben J.
- Abstract
Whole genome sequence data (BAM format) of 234 bovine individuals aligned to UMD3.1. The aim of the study was to identify genetic variants (SNPs and indels) for downstream analysis such as imputation, GWAS, and detection of lethal recessives. Additional sequences for later 1000 bull genomes runs can be found at partners individual projects including PRJEB9343, PRJNA176557, PRJEB18113, PRNJA343262, PRJNA324822, PRJNA324270, PRJNA277147, PRJEB5462.
- Published
- 2014
33. Déterminisme génétique de la composition en acides gras et protéines du lait des ruminants, et potentialités de sélection
- Author
-
BOICHARD, D., primary, GOVIGNON-GION, A., additional, LARROQUE, H., additional, MAROTEAU, C., additional, PALHIÈRE, I., additional, TOSSER-KLOPP, G., additional, RUPP, R., additional, SANCHEZ, M.P., additional, and BROCHARD, M., additional
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.