238 results on '"Dhomse, S."'
Search Results
2. Chapter 6 - Stratospheric Chemistry in SPARC Report No. 5 on the Evaluation of Chemistry-Climate Models
- Author
-
Chipperfield, M., Kinnison, D., Bekki, S., Bruhl, C., Canty, T., Cionni, I., Dhomse, S., Froidevaux, L., Fuller, R., Muller, R., Prather, M., Salawitch, R., Santee, M., Tian, W., and Tilmes, S.
- Published
- 2010
3. Delay in recovery of the Antarctic ozone hole from unexpected CFC-11 emissions
- Author
-
Dhomse, S. S., Feng, W., Montzka, S. A., Hossaini, R., Keeble, J., Pyle, J. A., Daniel, J. S., and Chipperfield, M. P.
- Published
- 2019
- Full Text
- View/download PDF
4. Preliminary observations and simulation of nocturnal variations of airglow temperature and emission rates at Pune (18.5°N), India
- Author
-
Fadnavis, S., Feng, W., Shepherd, Gordon G., Plane, J.M.C., Sonbawne, S., Roy, Chaitri, Dhomse, S., and Ghude, S.D.
- Published
- 2016
- Full Text
- View/download PDF
5. Evaluation of the inter-annual variability of stratospheric chemical composition in chemistry-climate models using ground-based multi species time series
- Author
-
Poulain, V., Bekki, S., Marchand, M., Chipperfield, M.P., Khodri, M., Lefèvre, F., Dhomse, S., Bodeker, G.E., Toumi, R., De Maziere, M., Pommereau, J.-P., Pazmino, A., Goutail, F., Plummer, D., Rozanov, E., Mancini, E., Akiyoshi, H., Lamarque, J.-F., and Austin, J.
- Published
- 2016
- Full Text
- View/download PDF
6. A single-peak-structured solar cycle signal in stratospheric ozone based on Microwave Limb Sounder observations and model simulations
- Author
-
Dhomse, S. S., Chipperfield, M. P., Feng, W., Hossaini, R., Mann, G. W., Santee, M. L., Weber, M., Dhomse, S. S., Chipperfield, M. P., Feng, W., Hossaini, R., Mann, G. W., Santee, M. L., and Weber, M.
- Abstract
Until now our understanding of the 11-year solar cycle signal (SCS) in stratospheric ozone has been largely based on high-quality but sparse ozone profiles from the Stratospheric Aerosol and Gas Experiment (SAGE) II or coarsely resolved ozone profiles from the nadir-viewing Solar Backscatter Ultraviolet Radiometer (SBUV) satellite instruments. Here, we analyse 16 years (2005–2020) of ozone profile measurements from the Microwave Limb Sounder (MLS) instrument on the Aura satellite to estimate the 11-year SCS in stratospheric ozone. Our analysis of Aura-MLS data suggests a single-peak-structured SCS profile (about 3 % near 4 hPa or 40 km) in tropical stratospheric ozone, which is significantly different to the SAGE II and SBUV-based double-peak-structured SCS. We also find that MLS-observed ozone variations are more consistent with ozone from our control model simulation that uses Naval Research Laboratory (NRL) v2 solar fluxes. However, in the lowermost stratosphere modelled ozone shows a negligible SCS compared to about 1 % in Aura-MLS data. An ensemble of ordinary least squares (OLS) and three regularised (lasso, ridge and elastic net) linear regression models confirms the robustness of the estimated SCS. In addition, our analysis of MLS and model simulations shows a large SCS in the Antarctic lower stratosphere that was not seen in earlier studies. We also analyse chemical transport model simulations with alternative solar flux data. We find that in the upper (and middle) stratosphere the model simulation with Solar Radiation and Climate Experiment (SORCE) satellite solar fluxes is also consistent with the MLS-derived SCS and agrees well with the control simulation and one which uses Spectral and Total Irradiance Reconstructions (SATIRE) solar fluxes. Hence, our model simulation suggests that with recent adjustments and corrections, SORCE data can be used to analyse effects of solar flux variations. Furthermore, analysis of a simulation with fixed solar fluxes and
- Published
- 2022
7. A Single-Peak-Structured Solar Cycle Signal in Stratospheric Ozone based on Microwave Limb Sounder Observations and Model Simulations
- Author
-
Dhomse S. S., Chipperfield M. P., Feng W., Hossaini R., Mann G. W., Santee M. L., and Weber M.
- Subjects
solar signal, stratospheric ozone, chemical modeling, satellite data - Abstract
Individual file contain TOMCAT CTM simulated ozone profiles from five model simulations analysed in the following publication. Briefly, vmro3_T2Mz_TOMCAT_A_NRL2_2005-2020.nc contain ozone profilesfromthecontrol simulation that uses ERA5 dynamical forcing fields and NRL V2 solar fluxes vmro3_T2Mz_TOMCAT_B_SATIRE_2005-2020.nc andvmro3_T2Mz_TOMCAT_C_SORCE_2005-2020.nccontain ozone profiles from a simulations that aresimilar to the control simulation but with SATIRE and SORCE solar fluxes vmro3_T2Mz_TOMCAT_D_SFix_2005-2020.nc has ozone profiles fromsimulation that is similar to the control simulation but with fixed solar fluxes, whereasvmro3_T2Mz_TOMCAT_E_DFix_2005-2020.nc also contain ozone profiles from a simulation where model uses annually repeating dynamical fields. Dhomse, S. S., Chipperfield, M. P., Feng, W., Hossaini, R., Mann, G. W., Santee, M. L., and Weber, M.: A Single-Peak-Structured Solar Cycle Signal in Stratospheric Ozone based on Microwave Limb Sounder Observations and Model Simulations, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-663, in review, 2021.  
- Published
- 2022
8. Chemistry–Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes
- Author
-
Butchart, Neal, Cionni, I., Eyring, V., Shepherd, T. G., Waugh, D. W., Akiyoshi, H., Austin, J., Brühl, C., Chipperfield, M. P., Cordero, E., Dameris, M., Deckert, R., Dhomse, S., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Kinnison, D. E., Li, F., Mancini, E., McLandress, C., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Sassi, F., Scinocca, J. F., Shibata, K., Steil, B., and Tian, W.
- Published
- 2010
9. Ozone trends in the vertical structure of Upper Troposphere and Lower stratosphere over the Indian monsoon region
- Author
-
Fadnavis, S., Dhomse, S., Ghude, S., Iyer, U., Buchunde, P., Sonbawne, S., and Raj, P. E.
- Published
- 2014
- Full Text
- View/download PDF
10. Stratospheric Fluorine as a Tracer of Circulation Changes: Comparison Between Infrared Remote‐Sensing Observations and Simulations With Five Modern Reanalyses
- Author
-
Prignon, M., primary, Chabrillat, S., additional, Friedrich, M., additional, Smale, D., additional, Strahan, S. E., additional, Bernath, P. F., additional, Chipperfield, M. P., additional, Dhomse, S. S., additional, Feng, W., additional, Minganti, D., additional, Servais, C., additional, and Mahieu, E., additional
- Published
- 2021
- Full Text
- View/download PDF
11. Stratospheric Fluorine as a Tracer of Circulation Changes: Comparison Between Infrared Remote-Sensing Observations and Simulations With Five Modern Reanalyses
- Author
-
Prignon, M., Chabrillat, S., Friedrich, M., Smale, D., Strahan, S. E., Bernath, P. F., Chipperfield, M. P., Dhomse, S. S., Feng, W., Minganti, D., Servais, C., Mahieu, E., Prignon, M., Chabrillat, S., Friedrich, M., Smale, D., Strahan, S. E., Bernath, P. F., Chipperfield, M. P., Dhomse, S. S., Feng, W., Minganti, D., Servais, C., and Mahieu, E.
- Abstract
Using multidecadal time series of ground-based and satellite Fourier transform infrared measurements of inorganic fluorine (i.e., total fluorine resident in stratospheric fluorine reservoirs), we investigate stratospheric circulation changes over the past 20 years. The representation of these changes in five modern reanalyses is further analyzed through chemical-transport model (CTM) simulations. From the observations but also from all reanalyses, we show that the inorganic fluorine is accumulating less rapidly in the Southern Hemisphere than in the Northern Hemisphere during the 21st century. Comparisons with a study evaluating the age-of-air of these reanalyses using the same CTM allow us to link this hemispheric asymmetry to changes in the Brewer-Dobson circulation (BDC), with the age-of-air of the Southern Hemisphere getting younger relative to that of the Northern Hemisphere. Large differences in simulated total columns and absolute trend values are, nevertheless, depicted between our simulations driven by the five reanalyses. Superimposed on this multidecadal change, we, furthermore, confirm a 5–7-year variability of the BDC that was first described in a recent study analyzing long-term time series of hydrogen chloride (HCl) and nitric acid (HNO3). It is important to stress that our results, based on observations and meteorological reanalyses, are in contrast with the projections of chemistry-climate models in response to the coupled increase of greenhouse gases and decrease of ozone-depleting substances, calling for further investigations and the continuation of long-term observations.
- Published
- 2021
- Full Text
- View/download PDF
12. Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes
- Author
-
Mahieu, E., Chipperfield, M. P., Notholt, J., Reddmann, T., Anderson, J., Bernath, P. F., Blumenstock, T., Coffey, M. T., Dhomse, S. S., Feng, W., Franco, B., Froidevaux, L., Griffith, D. W. T., Hannigan, J. W., Hase, F., Hossaini, R., Jones, N. B., Morino, I., Murata, I., Nakajima, H., Palm, M., Paton-Walsh, C., Russell, J. M., III, Schneider, M., Servais, C., Smale, D., and Walker, K. A.
- Published
- 2014
- Full Text
- View/download PDF
13. Multimodel Estimates of Atmospheric Lifetimes of Long-Lived Ozone-Depleting Substances: Present and Future
- Author
-
Chipperfield, M. P, Liang, Q, Strahan, S. E, Morgenstern, O, Dhomse, S. S, Abraham, N. L, Archibald, A. T, Bekki, S, Braesicke, P, Di Genova, G, Fleming, E. L, Hardiman, S. C, Iachetti, D, Jackman, C. H, Kinnison, D. E, Marchand, M, Pitari, G, Pyle, J. A, Rozanov, E, Stenke, A, and Tummon, F
- Subjects
Meteorology And Climatology ,Geophysics - Abstract
We have diagnosed the lifetimes of long-lived source gases emitted at the surface and removed in the stratosphere using six three-dimensional chemistry-climate models and a two-dimensional model. The models all used the same standard photochemical data. We investigate the effect of different definitions of lifetimes, including running the models with both mixing ratio (MBC) and flux (FBC) boundary conditions. Within the same model, the lifetimes diagnosed by different methods agree very well. Using FBCs versus MBCs leads to a different tracer burden as the implied lifetime contained in theMBC value does not necessarilymatch a model's own calculated lifetime. In general, there are much larger differences in the lifetimes calculated by different models, the main causes of which are variations in the modeled rates of ascent and horizontal mixing in the tropical midlower stratosphere. The model runs have been used to compute instantaneous and steady state lifetimes. For chlorofluorocarbons (CFCs) their atmospheric distribution was far from steady state in their growth phase through to the 1980s, and the diagnosed instantaneous lifetime is accordingly much longer. Following the cessation of emissions, the resulting decay of CFCs is much closer to steady state. For 2100 conditions the model circulation speeds generally increase, but a thicker ozone layer due to recovery and climate change reduces photolysis rates. These effects compensate so the net impact on modeled lifetimes is small. For future assessments of stratospheric ozone, use of FBCs would allow a consistent balance between rate of CFC removal and model circulation rate.
- Published
- 2014
- Full Text
- View/download PDF
14. Multimodel Assessment of the Factors Driving Stratospheric Ozone Evolution over the 21st Century
- Author
-
Oman, L. D, Plummer, D. A, Waugh, D. W, Austin, J, Scinocca, J. F, Douglass, A. R, Salawitch, R. J, Canty, T, Akiyoshi, H, Bekki, S, Braesicke, P, Butchart, N, Chipperfield, M. P, Cugnet, D, Dhomse, S, Eyring, V, Frith, S, Hardiman, S. C, Kinnison, D. E, Lamarque, J.-F, Mancini, E, Marchand, M, Michou, M, Morgenstern, O, and Nakamura, T
- Subjects
Geophysics - Abstract
The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from 14 chemistry-climate models, driven by prescribed levels of halogens and greenhouse gases. There is general agreement among the models that total column ozone reached a minimum around year 2000 at all latitudes, projected to be followed by an increase over the first half of the 21st century. In the second half of the 21st century, ozone is projected to continue increasing, level off, or even decrease depending on the latitude. Separation into partial columns above and below 20 hPa reveals that these latitudinal differences are almost completely caused by differences in the model projections of ozone in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and is projected to return to 1960 levels well before the end of the century, although there is a spread among models in the dates that ozone returns to specific historical values. We find decreasing halogens and declining upper atmospheric temperatures, driven by increasing greenhouse gases, contribute almost equally to increases in upper stratospheric ozone. In the tropical lower stratosphere, an increase in upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in most of the models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century, returning to 1960 levels well before the end of the century in most models.
- Published
- 2010
- Full Text
- View/download PDF
15. Quantifying Uncertainty in Projections of Stratospheric Ozone Over the 21st Century
- Author
-
Charlton-Perez, A. J, Hawkins, E, Eyring, V, Cionni, I, Bodeker, G. E, Kinnison, D. E, Akiyoshi, H, Frith, S. M, Garcia, R, Gettelman, A, Lamarque, J. F, Nakamura, T, Pawson, S, Yamashita, Y, Bekki, S, Braesicke, P, Chipperfield, M. P, Dhomse, S, Marchand, M, Mancini, E, Morgenstern, O, Pitari, G, Plummer, D, Pyle, J. A, and Rozanov, E
- Subjects
Meteorology And Climatology - Abstract
Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an ensemble of opportunity of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for 10 ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21 st century, up-to and after the time when ozone concentrations 15 return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels.
- Published
- 2010
16. Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations
- Author
-
Strahan, S. E, Douglass, A. R, Stolarski, R. S, Akiyoshi, H, Bekki, S, Braesicke, P, Butchart, N, Chipperfield, M. P, Cugnet, D, Dhomse, S, Frith, S. M, Gettleman, A, Hardiman, S. C, Kinnison, D. E, Lamarque, J.-F, Mancini, E, Marchand, M, Michou, M, Morgenstern, O, Nakamura, T, Olivie, D, Pawson, S, Pitari, G, Plummer, D. A, and Pyle, J. A
- Subjects
Environment Pollution - Abstract
We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.
- Published
- 2010
17. Multi-Model Assessment of the Factors Driving Stratospheric Ozone Evolution Over the 21st Century
- Author
-
Oman, L. D, Plummer, D. A, Waugh, D. W, Austin, J, Scinocca, J, Douglass, A. R, Salawitch, R. J, Canty, T, Akiyoshi, H, Bekki, S, Braesicke, P, Butchart, N, Chipperfield, M. P, Cugnet, D, Dhomse, S, Eyring, V, Frith, S, Hardiman, S. C, Kinnison, D. E, Lamarque, J. F, Mancini, E, Marchand, M, Michou, M, Morgenstern, O, and Nakamura T
- Subjects
Meteorology And Climatology - Abstract
The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from fourteen chemistry-climate models. There is general agreement among the models at the broadest levels, showing column ozone decreasing at all latitudes from 1960 to around 2000, then increasing at all latitudes over the first half of the 21st century, and latitudinal variations in the rate of increase and date of return to historical values. In the second half of the century, ozone is projected to continue increasing, level off or even decrease depending on the latitude, resulting in variable dates of return to historical values at latitudes where column ozone has declined below those levels. Separation into partial column above and below 20 hPa reveals that these latitudinal differences are almost completely due to differences in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and returns to 1960 levels before the end of the century, although there is a spread among the models in dates that ozone returns to historical values. Using multiple linear regression, we find decreasing halogens and increasing greenhouse gases contribute almost equally to increases in the upper stratospheric ozone. In the tropical lower stratosphere an increase in tropical upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in all models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century and returns to 1960 levels.
- Published
- 2010
18. Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative
- Author
-
Lamy, K., Portafaix, T., Josse, B., Brogniez, C., Godin-Beekmann, S., Bencherif, H., Revell, L., Akiyoshi, H., Bekki, S., Hegglin, M. I., Jöckel, Patrick, Kirner, O., Liley, B., Marecal, V., Morgenstern, O., Stenke, A., Zeng, G., Abraham, N. L., Archibald, A. T., Butchart, N., Chipperfield, M. P., Di Genova, G., Deushi, M., Dhomse, S. S., Hu, R.-M., Kinnison, D., Kotkamp, M., McKenzie, R., Michou, M., O'Connor, F. M., Oman, L. D., Pitari, G., Plummer, D. A., Pyle, J. A., Rozanov, E., Saint-Martin, D., Sudo, K., Tanaka, T. Y., Visioni, D., Yoshida, K., Laboratoire de l'Atmosphère et des Cyclones (LACy), Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), School of Chemistry and Physics [Durban], University of KwaZulu-Natal (UKZN), Institute for Atmospheric and Climate Science [Zürich] (IAC), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), School of Physical Chemical Sciences [Christchurch], University of Canterbury [Christchurch], Bodeker Scientific, National Institute for Environmental Studies (NIES), Department of Meteorology [Reading], University of Reading (UOR), DLR Institut für Physik der Atmosphäre (IPA), Deutsches Zentrum für Luft- und Raumfahrt [Oberpfaffenhofen-Wessling] (DLR), Steinbuch Centre for Computing [Karlsruhe] (SCC), Karlsruher Institut für Technologie (KIT), National Institute of Water and Atmospheric Research [Wellington] (NIWA), National Centre for Atmospheric Science [Leeds] (NCAS), Natural Environment Research Council (NERC), Department of Chemistry [Cambridge, UK], University of Cambridge [UK] (CAM), Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], School of Earth and Environment [Leeds] (SEE), University of Leeds, Department of Physical and Chemical Sciences [L'Aquila] (DSFC), Università degli Studi dell'Aquila (UNIVAQ), Meteorological Research Institute [Tsukuba] (MRI), Japan Meteorological Agency (JMA), National Center for Atmospheric Research [Boulder] (NCAR), NASA Goddard Space Flight Center (GSFC), Environment and Climate Change Canada, Centre for Atmospheric Science [Cambridge, UK], Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC), Graduate School of Environmental Studies [Nagoya], Nagoya University, Sibley School of Mechanical and Aerospace Engineering (MAE), Cornell University [New York], Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Météo France, Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), University of KwaZulu-Natal [Durban, Afrique du Sud] (UKZN), Università degli Studi dell'Aquila = University of L'Aquila (UNIVAQ), and Météo France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,EMAC ,ozone ,Atmospheric physics and chemistry ,MESSy ,CCMI ,Erdsystem-Modellierung ,clear-sky ,ultraviolot radiation ,chemistry-climate modelling - Abstract
We have derived values of the ultraviolet index (UVI) at solar noon using the Tropospheric Ultraviolet Model (TUV) driven by ozone, temperature and aerosol fields from climate simulations of the first phase of the Chemistry-Climate Model Initiative (CCMI-1). Since clouds remain one of the largest uncertainties in climate projections, we simulated only the clear-sky UVI. We compared the modelled UVI climatologies against present-day climatological values of UVI derived from both satellite data (the OMI-Aura OMUVBd product) and ground-based measurements (from the NDACC network). Depending on the region, relative differences between the UVI obtained from CCMI/TUV calculations and the ground-based measurements ranged between −5.9 % and 10.6 %. We then calculated the UVI evolution throughout the 21st century for the four Representative Concentration Pathways (RCPs 2.6, 4.5, 6.0 and 8.5). Compared to 1960s values, we found an average increase in the UVI in 2100 (of 2 %–4 %) in the tropical belt (30∘ N–30∘ S). For the mid-latitudes, we observed a 1.8 % to 3.4 % increase in the Southern Hemisphere for RCPs 2.6, 4.5 and 6.0 and found a 2.3 % decrease in RCP 8.5. Higher increases in UVI are projected in the Northern Hemisphere except for RCP 8.5. At high latitudes, ozone recovery is well identified and induces a complete return of mean UVI levels to 1960 values for RCP 8.5 in the Southern Hemisphere. In the Northern Hemisphere, UVI levels in 2100 are higher by 0.5 % to 5.5 % for RCPs 2.6, 4.5 and 6.0 and they are lower by 7.9 % for RCP 8.5. We analysed the impacts of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) on UVI from 1960 by comparing CCMI sensitivity simulations (1960–2100) with fixed GHGs or ODSs at their respective 1960 levels. As expected with ODS fixed at their 1960 levels, there is no large decrease in ozone levels and consequently no sudden increase in UVI levels. With fixed GHG, we observed a delayed return of ozone to 1960 values, with a corresponding pattern of change observed on UVI, and looking at the UVI difference between 2090s values and 1960s values, we found an 8 % increase in the tropical belt during the summer of each hemisphere. Finally we show that, while in the Southern Hemisphere the UVI is mainly driven by total ozone column, in the Northern Hemisphere both total ozone column and aerosol optical depth drive UVI levels, with aerosol optical depth having twice as much influence on the UVI as total ozone column does. ISSN:1680-7375 ISSN:1680-7367
- Published
- 2019
19. Large impacts, past and future, of ozone‐depleting substances on Brewer‐Dobson circulation trends: a multimodel assessment
- Author
-
Polvani, L. M., Wang, L., Ábalos Álvarez, Marta, Butchart, N., Chipperfield, M. P., Dameris, M., Deushi, M., Dhomse, S. S., Jöckel, P., Stone, K. A., Polvani, L. M., Wang, L., Ábalos Álvarez, Marta, Butchart, N., Chipperfield, M. P., Dameris, M., Deushi, M., Dhomse, S. S., Jöckel, P., and Stone, K. A.
- Abstract
Atraccion de Talento de la Comunidad de Madrid (2016-T2/AMB-1405) Project STEADY (CGL2017-83198-R) Artículo firmado por 15 autores., Substantial increases in the atmospheric concentration of well-mixed greenhouse gases (notably CO_(2)), such as those projected to occur by the end of the 21st century under large radiative forcing scenarios, have long been known to cause an acceleration of the Brewer-Dobson circulation (BDC) in climate models. More recently, however, several single-model studies have proposed that ozone-depleting substances might also be important drivers of BDC trends. As these studies were conducted with different forcings over different periods, it is difficult to combine them to obtain a robust quantitative picture of the relative importance of ozone-depleting substances as drivers of BDC trends. To this end, we here analyze—over identical past and future periods—the output from 20 similarly forced models, gathered from two recent chemistry-climate modeling intercomparison projects. Our multimodel analysis reveals that ozone-depleting substances are responsible for more than half of the modeled BDC trends in the two decades 1980–2000.We also find that, as a consequence of the Montreal Protocol, decreasing concentrations of ozone-depleting substances in coming decades will strongly decelerate the BDC until the year 2080, reducing the age-of-air trends by more than half, and will thus substantially mitigate the impact of increasing CO_(2). As ozone-depleting substances impact BDC trends, primarily, via the depletion/recovery of stratospheric ozone over the South Pole, they impart seasonal and hemispheric asymmetries to the trends which may offer opportunities for detection in coming decades., Fudan University, National Natural Science Foundation of China (NSFC), Comunidad de Madrid, Ministerio de Economía, Industria y Competitividad (España), Met Office Hadley Centre Programme - BEIS, Met Office Hadley Centre Programme - Defra, European Commission, NZ Governments Strategic Science Investment Fund (SSIF), Royal Society of New Zealand, Depto. de Física de la Tierra y Astrofísica, Fac. de Ciencias Físicas, TRUE, pub, Pagado por el autor
- Published
- 2019
20. Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora
- Author
-
Marshall, L., Schmidt, A., Toohey, M., Carslaw, K. S., Mann, G. W., Sigl, M., Khodri, Myriam, Timmreck, C., Zanchettin, D., Ball, W. T., Bekki, S., Brooke, J. S. A., Dhomse, S., Johnson, C., Lamarque, J. F., LeGrande, A. N., Mills, M. J., Niemeier, U., Pope, J. O., Poulain, V., Robock, A., Rozanov, E., Stenke, A., Sukhodolov, T., Tilmes, S., Tsigaridis, K., Tummon, F., Institute for Climate and Atmospheric Science [Leeds] (ICAS), School of Earth and Environment [Leeds] (SEE), University of Leeds-University of Leeds, Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Max-Planck-Institut für Meteorologie (MPI-M), Max-Planck-Gesellschaft, National Centre for Atmospheric Science [Leeds] (NCAS), Natural Environment Research Council (NERC), Laboratory of Environmental Chemistry [Villigen] (LUC), Paul Scherrer Institute (PSI), Océan et variabilité du climat (VARCLIM), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Max Planck Institute for Meteorology (MPI-M), Department of Environmental Sciences, Informatics and Statistics [Venezia], University of Ca’ Foscari [Venice, Italy], Institute for Atmospheric and Climate Science [Zürich] (IAC), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC), STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), School of Chemistry [Leeds], University of Leeds, Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], Atmospheric Chemistry Observations and Modeling Laboratory (ACOML), National Center for Atmospheric Research [Boulder] (NCAR), NASA Goddard Space Flight Center (GSFC), British Antarctic Survey (BAS), Processus de la variabilité climatique tropicale et impacts (PARVATI), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Environmental Sciences [New Brunswick], School of Environmental and Biological Sciences [New Brunswick], Rutgers, The State University of New Jersey [New Brunswick] (RU), Rutgers University System (Rutgers)-Rutgers University System (Rutgers)-Rutgers, The State University of New Jersey [New Brunswick] (RU), Rutgers University System (Rutgers)-Rutgers University System (Rutgers), NASA Goddard Institute for Space Studies (GISS), Center for Climate Systems Research [New York] (CCSR), Columbia University [New York], The Arctic University of Norway [Tromsø, Norway] (UiT), US National Science Foundation grant AGS-1430051, German Federal Ministry of Education and Research (BMBF), research program 'MiKliP' (FKZ: 01LP1517B, Swiss National Science Foundation grant 20F121_138017, NERC grant NEK/K012150/1, ANR-10-LABX-0018,L-IPSL,LabEx Institut Pierre Simon Laplace (IPSL): Understand climate and anticipate future changes(2010), European Project: 603557,EC:FP7:ENV,FP7-ENV-2013-two-stage,STRATOCLIM(2013), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), and The Arctic University of Norway (UiT)
- Subjects
[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology ,Settore GEO/12 - Oceanografia e Fisica dell'Atmosfera - Abstract
Source at https://doi.org/10.5194/acp-18-2307-2018. The eruption of Mt. Tambora in 1815 was the largest volcanic eruption of the past 500 years. The eruption had significant climatic impacts, leading to the 1816 "year without a summer", and remains a valuable event from which to understand the climatic effects of large stratospheric volcanic sulfur dioxide injections. The eruption also resulted in one of the strongest and most easily identifiable volcanic sulfate signals in polar ice cores, which are widely used to reconstruct the timing and atmospheric sulfate loading of past eruptions. As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), five state-of-the-art global aerosol models simulated this eruption. We analyse both simulated background (no Tambora) and volcanic (with Tambora) sulfate deposition to polar regions and compare to ice core records. The models simulate overall similar patterns of background sulfate deposition, although there are differences in regional details and magnitude. However, the volcanic sulfate deposition varies considerably between the models with differences in timing, spatial pattern and magnitude. Mean simulated deposited sulfate on Antarctica ranges from 19 to 264 kg km−2 and on Greenland from 31 to 194 kg km−2, as compared to the mean ice-core-derived estimates of roughly 50 kg km−2 for both Greenland and Antarctica. The ratio of the hemispheric atmospheric sulfate aerosol burden after the eruption to the average ice sheet deposited sulfate varies between models by up to a factor of 15. Sources of this inter-model variability include differences in both the formation and the transport of sulfate aerosol. Our results suggest that deriving relationships between sulfate deposited on ice sheets and atmospheric sulfate burdens from model simulations may be associated with greater uncertainties than previously thought.
- Published
- 2018
21. A refined method for calculating equivalent effective stratospheric chlorine
- Author
-
Engel, A, Bönisch, H, Ostermöller, J, Chipperfield, MP, Dhomse, S, Jöckel, P, and Kaiser, Jan
- Subjects
ozone depleting substances ,ODS ,EMAC ,ozone ,Earth sciences ,Erdsystem-Modellierung ,stratosphere ,TOMCAT ,ddc:550 ,stratospheric chlorine ,ECHAM/MESSy Atmospheric Chemistry ,EESC ,Earth System Chemistry integrated Modelling (ESCiMo) - Abstract
Chlorine and bromine atoms lead to catalytic depletion of ozone in the stratosphere. Therefore the use and production of ozone-depleting substances (ODSs) containing chlorine and bromine is regulated by the Montreal Protocol to protect the ozone layer. Equivalent effective stratospheric chlorine (EESC) has been adopted as an appropriate metric to describe the combined effects of chlorine and bromine released from halocarbons on stratospheric ozone. Here we revisit the concept of calculating EESC. We derive a refined formulation of EESC based on an advanced concept of ODS propagation into the stratosphere and reactive halogen release. A new transit time distribution is introduced in which the age spectrum for an inert tracer is weighted with the release function for inorganic halogen from the source gases. This distribution is termed the "release time distribution". We show that a much better agreement with inorganic halogen loading from the chemistry transport model TOMCAT is achieved compared with using the current formulation. The refined formulation shows EESC levels in the year 1980 for the mid-latitude lower stratosphere, which are significantly lower than previously calculated. The year 1980 is commonly used as a benchmark to which EESC must return in order to reach significant progress towards halogen and ozone recovery. Assuming that - under otherwise unchanged conditions - the EESC value must return to the same level in order for ozone to fully recover, we show that it will take more than 10 years longer than estimated in this region of the stratosphere with the current method for calculation of EESC. We also present a range of sensitivity studies to investigate the effect of changes and uncertainties in the fractional release factors and in the assumptions on the shape of the release time distributions. We further discuss the value of EESC as a proxy for future evolution of inorganic halogen loading under changing atmospheric dynamics using simulations from the EMAC model. We show that while the expected changes in stratospheric transport lead to significant differences between EESC and modelled inorganic halogen loading at constant mean age, EESC is a reasonable proxy for modelled inorganic halogen on a constant pressure level.
- Published
- 2018
- Full Text
- View/download PDF
22. Large Impacts, Past and Future, of Ozone‐Depleting Substances on Brewer‐Dobson Circulation Trends: A Multimodel Assessment
- Author
-
Polvani, L. M., primary, Wang, L., additional, Abalos, M., additional, Butchart, N., additional, Chipperfield, M. P., additional, Dameris, M., additional, Deushi, M., additional, Dhomse, S. S., additional, Jöckel, P., additional, Kinnison, D., additional, Michou, M., additional, Morgenstern, O., additional, Oman, L. D., additional, Plummer, D. A., additional, and Stone, K. A., additional
- Published
- 2019
- Full Text
- View/download PDF
23. Stratospheric Injection of Brominated Very Short-Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models
- Author
-
National Science Foundation (US), National Aeronautics and Space Administration (US), National Center for Atmospheric Research (US), British Atmospheric Data Centre, Australian Research Council, Australian Antarctic Division, German Climate Computing Center, Federal Ministry of Education and Research (Germany), Wales, P. A., Salawitch, R. J., Nicely, J. M., Anderson, D. C., Canty, T. P., Baidar, S., Dix, B., Koenig, T.K., Volkamer, R., Chen, D., Huey, L.G., Tanner, D. J., Cuevas, Carlos A., Fernández, Rafael P., Kinnison, Douglas E., Lamarque, Jean-François, Saiz-Lopez, A., Atlas, Elliot L., Hall, S.R., Navarro, M. A., Pan, L.L., Schauffler, S. M., Stell, M., Tilmes, S., Ullmann, K., Weinheimer, A. J., Akiyoshi, Hideharu, Chipperfield, M.P., Deushi, Makoto, Dhomse, S. S., Feng, W., Graf, P., Hossaini, R., Jöckel, P., Mancini, E., Michou, M., Morgenstern, O., Oman, L. D., Pitari, G., Plummer, David A., Revell, L. E., Rozanov, E., Saint-Martin, D., Schofield, R., Stenke, A., Stone, K. A., Visioni, D., Yamashita, Y., Zeng, G., National Science Foundation (US), National Aeronautics and Space Administration (US), National Center for Atmospheric Research (US), British Atmospheric Data Centre, Australian Research Council, Australian Antarctic Division, German Climate Computing Center, Federal Ministry of Education and Research (Germany), Wales, P. A., Salawitch, R. J., Nicely, J. M., Anderson, D. C., Canty, T. P., Baidar, S., Dix, B., Koenig, T.K., Volkamer, R., Chen, D., Huey, L.G., Tanner, D. J., Cuevas, Carlos A., Fernández, Rafael P., Kinnison, Douglas E., Lamarque, Jean-François, Saiz-Lopez, A., Atlas, Elliot L., Hall, S.R., Navarro, M. A., Pan, L.L., Schauffler, S. M., Stell, M., Tilmes, S., Ullmann, K., Weinheimer, A. J., Akiyoshi, Hideharu, Chipperfield, M.P., Deushi, Makoto, Dhomse, S. S., Feng, W., Graf, P., Hossaini, R., Jöckel, P., Mancini, E., Michou, M., Morgenstern, O., Oman, L. D., Pitari, G., Plummer, David A., Revell, L. E., Rozanov, E., Saint-Martin, D., Schofield, R., Stenke, A., Stone, K. A., Visioni, D., Yamashita, Y., and Zeng, G.
- Abstract
We quantify the stratospheric injection of brominated very short-lived substances (VSLS) based on aircraft observations acquired in winter 2014 above the Tropical Western Pacific during the CONvective TRansport of Active Species in the Tropics (CONTRAST) and the Airborne Tropical TRopopause EXperiment (ATTREX) campaigns. The overall contribution of VSLS to stratospheric bromine was determined to be 5.0 ± 2.1 ppt, in agreement with the 5 ± 3 ppt estimate provided in the 2014 World Meteorological Organization (WMO) Ozone Assessment report (WMO 2014), but with lower uncertainty. Measurements of organic bromine compounds, including VSLS, were analyzed using CFC-11 as a reference stratospheric tracer. From this analysis, 2.9 ± 0.6 ppt of bromine enters the stratosphere via organic source gas injection of VSLS. This value is two times the mean bromine content of VSLS measured at the tropical tropopause, for regions outside of the Tropical Western Pacific, summarized in WMO 2014. A photochemical box model, constrained to CONTRAST observations, was used to estimate inorganic bromine from measurements of BrO collected by two instruments. The analysis indicates that 2.1 ± 2.1 ppt of bromine enters the stratosphere via inorganic product gas injection. We also examine the representation of brominated VSLS within 14 global models that participated in the Chemistry-Climate Model Initiative. The representation of stratospheric bromine in these models generally lies within the range of our empirical estimate. Models that include explicit representations of VSLS compare better with bromine observations in the lower stratosphere than models that utilize longer-lived chemicals as a surrogate for VSLS.
- Published
- 2018
24. A measurement-based verification framework for UK greenhouse gas emissions: An overview of the Greenhouse gAs Uk and Global Emissions (GAUGE) project
- Author
-
Palmer, P.I., O'Doherty, S., Allen, G., Bower, K., Bösch, H., Chipperfield, M.P., Connors, S., Dhomse, S., Feng, L., Finch, D. P., Gallagher, M. W., Gloor, E., Gonzi, S., Harris, Neil R. P., Helfter, C., Humpage, N., Kerridge, B., Knappett, D., Jones, R. L., Le Breton, M., Lunt, M. F., Manning, A. J., Matthiesen, S., Muller, J. B. A., Mullinger, N., Nemitz, E., O'Shea, S., Parker, R.J., Percival, C. J., Pitt, J., Riddick, S. N., Rigby, M., Sembhi, H., Siddans, R., Skelton, R. L., Smith, P., Sonderfeld, H., Stanley, K., Stavert, A. R., Wenger, A., White, E., Wilson, C., Young, D., Palmer, P.I., O'Doherty, S., Allen, G., Bower, K., Bösch, H., Chipperfield, M.P., Connors, S., Dhomse, S., Feng, L., Finch, D. P., Gallagher, M. W., Gloor, E., Gonzi, S., Harris, Neil R. P., Helfter, C., Humpage, N., Kerridge, B., Knappett, D., Jones, R. L., Le Breton, M., Lunt, M. F., Manning, A. J., Matthiesen, S., Muller, J. B. A., Mullinger, N., Nemitz, E., O'Shea, S., Parker, R.J., Percival, C. J., Pitt, J., Riddick, S. N., Rigby, M., Sembhi, H., Siddans, R., Skelton, R. L., Smith, P., Sonderfeld, H., Stanley, K., Stavert, A. R., Wenger, A., White, E., Wilson, C., and Young, D.
- Abstract
We describe the motivation, design, and execution of the Greenhouse gAs Uk and Global Emissions (GAUGE) project. The overarching scientific objective of GAUGE was to use atmospheric data to estimate the magnitude, distribution, and uncertainty of the UK greenhouse gas (GHG, defined here as CO2, CH4, and N2O) budget, 2013-2015. To address this objective, we established a multi-year and interlinked measurement and data analysis programme, building on an established tall-tower GHG measurement network. The calibrated measurement network comprises ground-based, airborne, ship-borne, balloon-borne, and space-borne GHG sensors. Our choice of measurement technologies and measurement locations reflects the heterogeneity of UK GHG sources, which range from small point sources such as landfills to large, diffuse sources such as agriculture. Atmospheric mole fraction data collected at the tall towers and on the ships provide information on sub-continental fluxes, representing the backbone to the GAUGE network. Additional spatial and temporal details of GHG fluxes over East Anglia were inferred from data collected by a regional network. Data collected during aircraft flights were used to study the transport of GHGs on local and regional scales. We purposely integrated new sensor and platform technologies into the GAUGE network, allowing us to lay the foundations of a strengthened UK capability to verify national GHG emissions beyond the project lifetime. For example, current satellites provide sparse and seasonally uneven sampling over the UK mainly because of its geographical size and cloud cover. This situation will improve with new and future satellite instruments, e.g. measurements of CH4 from the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5P. We use global, nested, and regional atmospheric transport models and inverse methods to infer geographically resolved CO2 and CH4 fluxes. This multi-model approach allows us to study model spread in a posteriori flux
- Published
- 2018
25. Deriving Global OH Abundance and Atmospheric Lifetimes for Long-Lived Gases: A Search for CH 3 CCl 3 Alternatives
- Author
-
Liang, Q, Chipperfield, MP, Fleming, EL, Abraham, NL, Braesicke, P, Burkholder, JB, Daniel, JS, Dhomse, S, Fraser, PJ, Hardiman, SC, Jackman, CH, Kinnison, DE, Krummel, PB, Montzka, SA, Morgenstern, O, McCulloch, A, Mühle, J, Newman, PA, Orkin, VL, Pitari, G, Prinn, RG, Rigby, M, Rozanov, E, Stenke, A, Tummon, F, Velders, GJM, Visioni, D, and Weiss, RF
- Abstract
An accurate estimate of global hydroxyl radical (OH) abundance is important for projections of air quality, climate, and stratospheric ozone recovery. As the atmospheric mixing ratios of methyl chloroform (CH₃CCl₃) (MCF), the commonly used OH reference gas, approaches zero, it is important to find alternative approaches to infer atmospheric OH abundance and variability. The lack of global bottom‐up emission inventories is the primary obstacle in choosing a MCF alternative. We illustrate that global emissions of long‐lived trace gases can be inferred from their observed mixing ratio differences between the Northern Hemisphere (NH) and Southern Hemisphere (SH), given realistic estimates of their NH‐SH exchange time, the emission partitioning between the two hemispheres, and the NH versus SH OH abundance ratio. Using the observed long‐term trend and emissions derived from the measured hemispheric gradient, the combination of HFC‐32 (CH₂F₂), HFC‐134a (CH₂FCF₃, HFC‐152a (CH₃CHF₂), and HCFC‐22 (CHClF₂), instead of a single gas, will be useful as a MCF alternative to infer global and hemispheric OH abundance and trace gas lifetimes. The primary assumption on which this multispecies approach relies is that the OH lifetimes can be estimated by scaling the thermal reaction rates of a reference gas at 272 K on global and hemispheric scales. Thus, the derived hemispheric and global OH estimates are forced to reconcile the observed trends and gradient for all four compounds simultaneously. However, currently, observations of these gases from the surface networks do not provide more accurate OH abundance estimate than that from MCF.
- Published
- 2017
26. Strong constraints on aerosol–cloud interactions from volcanic eruptions
- Author
-
Malavelle, FF, Haywood, JM, Jones, A, Gettelman, A, Clarisse, L, Bauduin, S, Allan, RP, Karset, IHH, Kristjánsson, JE, Oreopoulos, L, Cho, N, Lee, D, Bellouin, N, Boucher, O, Grosvenor, DP, Carslaw, KS, Dhomse, S, Mann, GW, Schmidt, A, Coe, H, Hartley, ME, Dalvi, M, Hill, AA, Johnson, BT, Johnson, CE, Knight, JR, O’Connor, FM, Partridge, DG, Stier, P, Myhre, G, Platnick, S, Stephens, GL, Takahashi, H, and Thordarson, T
- Abstract
Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol–cloud interactions. Here we show that the massive 2014–2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets—consistent with expectations—but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around −0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.
- Published
- 2017
27. Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model
- Author
-
Kovács, T, Feng, W, Totterdill, A, Plane, JMC, Dhomse, S, Gomez-Martin, JC, Stiller, GP, Haenel, FJ, Smith, C, Forster, PM, García, RR, Marsh, DR, and Chipperfield, MP
- Subjects
lcsh:Chemistry ,Earth sciences ,lcsh:QD1-999 ,ddc:550 ,lcsh:Physics ,lcsh:QC1-999 - Abstract
We have used the Whole Atmosphere Community Climate Model (WACCM), with an updated treatment of loss processes, to determine the atmospheric lifetime of sulfur hexafluoride (SF6). The model includes the following SF6 removal processes: photolysis, electron attachment and reaction with mesospheric metal atoms. The Sodankylä Ion Chemistry (SIC) model is incorporated into the standard version of WACCM to produce a new version with a detailed D region ion chemistry with cluster ions and negative ions. This is used to determine a latitude- and altitude-dependent scaling factor for the electron density in the standard WACCM in order to carry out multi-year SF6 simulations. The model gives a mean SF6 lifetime over an 11-year solar cycle (τ) of 1278 years (with a range from 1120 to 1475 years), which is much shorter than the currently widely used value of 3200 years, due to the larger contribution (97.4 %) of the modelled electron density to the total atmospheric loss. The loss of SF6 by reaction with mesospheric metal atoms (Na and K) is far too slow to affect the lifetime. We investigate how this shorter atmospheric lifetime impacts the use of SF6 to derive stratospheric age of air. The age of air derived from this shorter lifetime SF6 tracer is longer by 9 % in polar latitudes at 20 km compared to a passive SF6 tracer. We also present laboratory measurements of the infrared spectrum of SF6 and find good agreement with previous studies. We calculate the resulting radiative forcings and efficiencies to be, on average, very similar to those reported previously. Our values for the 20-, 100- and 500-year global warming potentials are 18 000, 23 800 and 31 300, respectively.
- Published
- 2017
28. The increasing threat to stratospheric ozone from dichloromethane
- Author
-
Hossaini, Ryan, Chipperfield, Martyn P, Montzka, S. A., Leeson, Amber Alexandra, Dhomse, S., Pyle, John, Hossaini, Ryan, Chipperfield, Martyn P, Montzka, S. A., Leeson, Amber Alexandra, Dhomse, S., and Pyle, John
- Abstract
It is well established that anthropogenic chlorine-containing chemicals contribute to ozone layer depletion. The successful implementation of the Montreal Protocol has led to reductions in the atmospheric concentration of many ozone-depleting gases, such as chlorofluorocarbons. As a consequence, stratospheric chlorine levels are declining and ozone is projected to return to levels observed pre-1980 later this century. However, recent observations show the atmospheric concentration of dichloromethane—an ozone-depleting gas not controlled by the Montreal Protocol—is increasing rapidly. Using atmospheric model simulations, we show that although currently modest, the impact of dichloromethane on ozone has increased markedly in recent years and if these increases continue into the future, the return of Antarctic ozone to pre-1980 levels could be substantially delayed. Sustained growth in dichloromethane would therefore offset some of the gains achieved by the Montreal Protocol, further delaying recovery of Earth’s ozone layer.
- Published
- 2017
29. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115)
- Author
-
Totterdill, A, Kovács, T, Feng, W, Dhomse, S, Smith, CJ, Gómez-Martín, JC, Chipperfield, MP, Forster, PM, and Plane, JMC
- Abstract
Fluorinated compounds such as NF3 and C2F5Cl (CFC-115) are characterised by very large global warming potentials (GWPs), which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry–climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21) years and (492 ± 22) years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.
- Published
- 2016
30. On the ambiguous nature of the 11 year solar cycle signal in upper stratospheric ozone
- Author
-
Dhomse, S. S., Chipperfield, M. P., Damadeo, R. P., Zawodny, J. M., Ball, W. T., Feng, W., Hossaini, R., Mann, G. W., and Haigh, J. D.
- Subjects
SAGE II ,Science & Technology ,QUASI-BIENNIAL OSCILLATION ,solar signal ,MT. PINATUBO ERUPTION ,CLIMATE MODEL ,CIRCULATION ,Geology ,modeling ,SIMULATIONS ,VARIABILITY ,CHEMICAL-TRANSPORT MODEL ,SPECTRAL IRRADIANCE ,Physical Sciences ,stratosphere ,MD Multidisciplinary ,Meteorology & Atmospheric Sciences ,Geosciences, Multidisciplinary ,VERSION - Abstract
Up to now our understanding of the 11 year ozone solar cycle signal (SCS) in the upper stratosphere has been largely based on the Stratospheric Aerosol and Gas Experiment (SAGE) II (v6.2) data record, which indicated a large positive signal which could not be reproduced by models, calling into question our understanding of the chemistry of the upper stratosphere. Here we present an analysis of new v7.0 SAGE II data which shows a smaller upper stratosphere ozone SCS, due to a more realistic ozone-temperature anticorrelation. New simulations from a state-of-art 3-D chemical transport model show a small SCS in the upper stratosphere, which is in agreement with SAGE v7.0 data and the shorter Halogen Occultation Experiment and Microwave Limb Sounder records. However, despite these improvements in the SAGE II data, there are still large uncertainties in current observational and meteorological reanalysis data sets, so accurate quantification of the influence of solar flux variability on the climate system remains an open scientific question.
- Published
- 2016
31. Evaluation of simulated photolysis rates and their response to solar irradiance variability
- Author
-
Sukhodolov, T, Rozanov, E, Ball, WT, Bais, A, Tourpali, K, Shapiro, AI, Telford, P, Smyshlyaev, S, Fomin, B, Sander, R, Bossay, S, Bekki, S, Marchand, M, Chipperfield, MP, Dhomse, S, Haigh, JD, Peter, T, and Schmutz, W
- Subjects
CHEMICAL-MODELS ,Science & Technology ,STRATOSPHERIC OZONE ,SPECTRAL IRRADIANCE ,Physical Sciences ,ROTATION CYCLE ,ACCURATE SIMULATION ,HEATING RATES ,Meteorology & Atmospheric Sciences ,CHEMISTRY-CLIMATE MODEL ,DYNAMICAL RESPONSE ,CIRCULATION MODEL ,MIDDLE ATMOSPHERE - Abstract
The state of the stratospheric ozone layer and the temperature structure of the atmosphere are largely controlled by the solar spectral irradiance (SSI) through its influence on heating and photolysis rates. This study focuses on the uncertainties in the photolysis rate response to solar irradiance variability related to the choice of SSI data set and to the performance of the photolysis codes used in global chemistry-climate models. To estimate the impact of SSI uncertainties, we compared several photolysis rates calculated with the radiative transfer model libRadtran, using SSI calculated with two models and observed during the Solar Radiation and Climate Experiment (SORCE) satellite mission. The importance of the calculated differences in the photolysis rate response for ozone and temperature changes has been estimated using 1-D a radiative-convective-photochemical model. We demonstrate that the main photolysis reactions, responsible for the solar signal in the stratosphere, are highly sensitive to the spectral distribution of SSI variations. Accordingly, the ozone changes and related ozone-temperature feedback are shown to depend substantially on the SSI data set being used, which highlights the necessity of obtaining accurate SSI variations. To evaluate the performance of photolysis codes, we compared the results of eight, widely used, photolysis codes against two reference schemes. We show that, in most cases, absolute values of the photolysis rates and their response to applied SSI changes agree within 30%. However, larger errors may appear in specific atmospheric regions because of differences, for instance, in the treatment of Rayleigh scattering, quantum yields, or absorption cross sections.
- Published
- 2016
32. On the ambiguous nature of the 11year solar cycle signal in upper stratospheric ozone
- Author
-
Dhomse, S. S., Chipperfield, M. P., Damadeo, R. P., Zawodny, J. M., Ball, W. T., Feng, W., Hossaini, R., Mann, G. W., Haigh, J. D., Dhomse, S. S., Chipperfield, M. P., Damadeo, R. P., Zawodny, J. M., Ball, W. T., Feng, W., Hossaini, R., Mann, G. W., and Haigh, J. D.
- Abstract
Up to now our understanding of the 11year ozone solar cycle signal (SCS) in the upper stratosphere has been largely based on the Stratospheric Aerosol and Gas Experiment (SAGE) II (v6.2) data record, which indicated a large positive signal which could not be reproduced by models, calling into question our understanding of the chemistry of the upper stratosphere. Here we present an analysis of new v7.0 SAGE II data which shows a smaller upper stratosphere ozone SCS, due to a more realistic ozone-temperature anticorrelation. New simulations from a state-of-art 3-D chemical transport model show a small SCS in the upper stratosphere, which is in agreement with SAGE v7.0 data and the shorter Halogen Occultation Experiment and Microwave Limb Sounder records. However, despite these improvements in the SAGE II data, there are still large uncertainties in current observational and meteorological reanalysis data sets, so accurate quantification of the influence of solar flux variability on the climate system remains an open scientific question.
- Published
- 2016
33. A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS):linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine
- Author
-
Hossaini, R., Patra, P. K., Leeson, A. A., Krysztofiak, G., Abraham, N. L., Archibald, A. T., Aschmann, J., Atlas, E. L., Belikov, D. A., Bönisch, H., Carpenter, L. J., Dhomse, S., Dorf, M., Engel, A., Feng, W., Fuhlbrügge, S., Griffiths, P. T., Harris, N. R. P., Hommel, R., Keber, T., Krüger, K., Lennartz, S. T., Maksyutov, S., Mantle, H., Mills, G. P., Montzka, S. A., Moore, F., Navarro, M. A., Oram, D. E., Pfeilsticker, K., Pyle, J. A., Quack, B., Saikawa, E., Saiz-Lopez, A., Sala, S., Sinnhuber, B.-M., Taguchi, S., Tegtmeier, S., Lidster, R. T., Ziska, F., Hossaini, R., Patra, P. K., Leeson, A. A., Krysztofiak, G., Abraham, N. L., Archibald, A. T., Aschmann, J., Atlas, E. L., Belikov, D. A., Bönisch, H., Carpenter, L. J., Dhomse, S., Dorf, M., Engel, A., Feng, W., Fuhlbrügge, S., Griffiths, P. T., Harris, N. R. P., Hommel, R., Keber, T., Krüger, K., Lennartz, S. T., Maksyutov, S., Mantle, H., Mills, G. P., Montzka, S. A., Moore, F., Navarro, M. A., Oram, D. E., Pfeilsticker, K., Pyle, J. A., Quack, B., Saikawa, E., Saiz-Lopez, A., Sala, S., Sinnhuber, B.-M., Taguchi, S., Tegtmeier, S., Lidster, R. T., and Ziska, F.
- Abstract
The first concerted multi-model intercomparison of halogenated very short-lived substances (VSLS) has been performed, within the framework of the ongoing Atmospheric Tracer Transport Model Intercomparison Project (TransCom). Eleven global models or model variants participated (nine chemical transport models and two chemistry–climate models) by simulating the major natural bromine VSLS, bromoform (CHBr3) and dibromomethane (CH2Br2), over a 20-year period (1993–2012). Except for three model simulations, all others were driven offline by (or nudged to) reanalysed meteorology. The overarching goal of TransCom-VSLS was to provide a reconciled model estimate of the stratospheric source gas injection (SGI) of bromine from these gases, to constrain the current measurement-derived range, and to investigate inter-model differences due to emissions and transport processes. Models ran with standardised idealised chemistry, to isolate differences due to transport, and we investigated the sensitivity of results to a range of VSLS emission inventories. Models were tested in their ability to reproduce the observed seasonal and spatial distribution of VSLS at the surface, using measurements from NOAA's long-term global monitoring network, and in the tropical troposphere, using recent aircraft measurements – including high-altitude observations from the NASA Global Hawk platform. The models generally capture the observed seasonal cycle of surface CHBr3 and CH2Br2 well, with a strong model–measurement correlation (r ≥ 0.7) at most sites. In a given model, the absolute model–measurement agreement at the surface is highly sensitive to the choice of emissions. Large inter-model differences are apparent when using the same emission inventory, highlighting the challenges faced in evaluating such inventories at the global scale. Across the ensemble, most consistency is found within the tropics where most of the models (8 out of 11) achieve best agreement to surface CHBr3 observations usin
- Published
- 2016
34. Model sensitivity studies of the decrease in atmospheric carbon tetrachloride
- Author
-
Chipperfield, Martyn P., Liang, Qing, Rigby, Matthew, Hossaini, Ryan, Montzka, S. A., Dhomse, S., Feng, Wuhu, Prinn, Ronald G., Weiss, Ray F., Harth, Christina M., Salameh, Peter K., Mühle, Jens, O'Doherty, Simon, Young, Dickon, Simmonds, Peter G., Krummel, Paul B., Frazer, Paul J., Steele, L. Paul, Happell, James D., Rhew, Robert C., Butler, James, Yvon-Lewis, Shari, Hall, Bradley, Nance, David, Moore, Fred, Miller, Ben R., Elkins, James W., Harrison, Jeremy J., Boone, Chris D., Atlas, Elliot L., Mahieu, Emmanuel, Chipperfield, Martyn P., Liang, Qing, Rigby, Matthew, Hossaini, Ryan, Montzka, S. A., Dhomse, S., Feng, Wuhu, Prinn, Ronald G., Weiss, Ray F., Harth, Christina M., Salameh, Peter K., Mühle, Jens, O'Doherty, Simon, Young, Dickon, Simmonds, Peter G., Krummel, Paul B., Frazer, Paul J., Steele, L. Paul, Happell, James D., Rhew, Robert C., Butler, James, Yvon-Lewis, Shari, Hall, Bradley, Nance, David, Moore, Fred, Miller, Ben R., Elkins, James W., Harrison, Jeremy J., Boone, Chris D., Atlas, Elliot L., and Mahieu, Emmanuel
- Abstract
Carbon tetrachloride (CCl4) is an ozone-depleting substance, which is controlled by the Montreal Protocol and for which the atmospheric abundance is decreasing. However, the current observed rate of this decrease is known to be slower than expected based on reported CCl4 emissions and its estimated overall atmospheric lifetime. Here we use a three-dimensional (3-D) chemical transport model to investigate the impact on its predicted decay of uncertainties in the rates at which CCl4 is removed from the atmosphere by photolysis, by ocean uptake and by degradation in soils. The largest sink is atmospheric photolysis (74 % of total), but a reported 10 % uncertainty in its combined photolysis cross section and quantum yield has only a modest impact on the modelled rate of CCl4 decay. This is partly due to the limiting effect of the rate of transport of CCl4 from the main tropospheric reservoir to the stratosphere, where photolytic loss occurs. The model suggests large interannual variability in the magnitude of this stratospheric photolysis sink caused by variations in transport. The impact of uncertainty in the minor soil sink (9 % of total) is also relatively small. In contrast, the model shows that uncertainty in ocean loss (17 % of total) has the largest impact on modelled CCl4 decay due to its sizeable contribution to CCl4 loss and large lifetime uncertainty range (147 to 241 years). With an assumed CCl4 emission rate of 39 Gg year−1, the reference simulation with the best estimate of loss processes still underestimates the observed CCl4 (overestimates the decay) over the past 2 decades but to a smaller extent than previous studies. Changes to the rate of CCl4 loss processes, in line with known uncertainties, could bring the model into agreement with in situ surface and remote-sensing measurements, as could an increase in emissions to around 47 Gg year−1. Further progress in constraining the CCl4 budget is partly limited by systematic biases between observational dat
- Published
- 2016
35. A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS): linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine
- Author
-
Hossaini, R., Patra, P. K., Leeson, A. A., Krysztofiak, G., Abraham, N. L., Andrews, S. J., Archibald, A. T., Aschmann, J., Atlas, E. L., Belikov, D. A., Bönisch, H., Butler, R., Carpenter, L. J., Dhomse, S., Dorf, M., Engel, A., Feng, L., Feng, W., Fuhlbrügge, Steffen, Griffiths, P. T., Harris, N. R. P., Hommel, R., Keber, T., Krüger, Kirstin, Lennartz, Sinnika T., Maksyutov, S., Mantle, H., Mills, G. P., Miller, B., Montzka, S. A., Moore, F., Navarro, M. A., Oram, D. E., Palmer, P. I., Pfeilsticker, K., Pyle, J. A., Quack, Birgit, Robinson, A. D., Saikawa, E., Saiz-Lopez, A., Sala, S., Sinnhuber, B.-M., Taguchi, S., Tegtmeier, Susann, Lidster, R. T., Wilson, C., Ziska, Franziska, Hossaini, R., Patra, P. K., Leeson, A. A., Krysztofiak, G., Abraham, N. L., Andrews, S. J., Archibald, A. T., Aschmann, J., Atlas, E. L., Belikov, D. A., Bönisch, H., Butler, R., Carpenter, L. J., Dhomse, S., Dorf, M., Engel, A., Feng, L., Feng, W., Fuhlbrügge, Steffen, Griffiths, P. T., Harris, N. R. P., Hommel, R., Keber, T., Krüger, Kirstin, Lennartz, Sinnika T., Maksyutov, S., Mantle, H., Mills, G. P., Miller, B., Montzka, S. A., Moore, F., Navarro, M. A., Oram, D. E., Palmer, P. I., Pfeilsticker, K., Pyle, J. A., Quack, Birgit, Robinson, A. D., Saikawa, E., Saiz-Lopez, A., Sala, S., Sinnhuber, B.-M., Taguchi, S., Tegtmeier, Susann, Lidster, R. T., Wilson, C., and Ziska, Franziska
- Abstract
The first concerted multi-model intercomparison of halogenated very short-lived substances (VSLS) has been performed, within the framework of the ongoing Atmospheric Tracer Transport Model Intercomparison Project (TransCom). Eleven global models or model variants participated, simulating the major natural bromine VSLS, bromoform (CHBr3) and dibromomethane (CH2Br2), over a 20-year period (1993-2012). The overarching goal of TransCom-VSLS was to provide a reconciled model estimate of the stratospheric source gas injection (SGI) of bromine from these gases, to constrain the current measurement-derived range, and to investigate inter-model differences due to emissions and transport processes.Models ran with standardised idealised chemistry, to isolate differences due to transport, and we investigated the sensitivity of results to a range of VSLS emission inventories. Models were tested in their ability to reproduce the observed seasonal and spatial distribution of VSLS at the surface, using measurements from NOAA’s long-term global monitoring network, and in the tropical troposphere, using recent aircraft measurements - including high altitude observations from the NASA Global Hawk platform. The models generally capture the seasonal cycle of surface CHBr3 and CH2Br2 well, with a strong model-measurement correlation (r ≥ 0.7) and a low sensitivity to the choice of emission inventory, at most sites. In a given model, the absolute model-measurement agreement is highly sensitive to the choice of emissions and inter-model differences are also apparent, even when using the same inventory, highlighting the challenges faced in evaluating such inventories at the global scale. Across the ensemble, most consistency is found within the tropics where most of the models (8 out of 11) achieve optimal agreement to surface CHBr3 observations using the lowest of the three CHBr3 emission inventories tested (similarly, 8 out of 11 models for CH2 Br2). In general, the models are able to rep
- Published
- 2016
- Full Text
- View/download PDF
36. Constraining the N2O5 UV absorption cross-section from spectroscopic trace gas measurements in the tropical mid-stratosphere
- Author
-
Kritten, L, Butz, A, Chipperfield, MP, Dorf, M, Dhomse, S, Hossaini, R, Oelhaf, H, Prados-Roman, C, Wetzel, G, and Pfeilsticker, K
- Abstract
The absorption cross-section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in JPL-2011, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 +BrONO2 + HNO3) photochemistry. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding-Balloon) observations in similar air masses at nighttime, and all other relevant species from simulations of the SLIMCAT chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200–260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260–350 nm), compared to current recommendations. In consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5 (λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2–0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.
- Published
- 2014
37. Constraining the N2O5 UV absorption cross section from spectroscopic trace gas measurements in the tropical mid-stratosphere
- Author
-
Kritten, L., Butz, A., Chipperfield, M. P., Dorf, M., Dhomse, S., Hossaini, R., Oelhaf, H., Prados-Roman, C., Wetzel, G., and Pfeilsticker, K.
- Subjects
lcsh:Chemistry ,Earth sciences ,lcsh:QD1-999 ,ddc:550 ,lcsh:Physics ,lcsh:QC1-999 - Abstract
© 2014 Author(s). The absorption cross section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in (Jet Propulsion Laboratory) JPL-2011; the spread in laboratory data, however, points to an uncertainty in the range of 25 to 30%, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2by limb scanning DOAS (differential optical absorption spectroscopy) measurements (Weidner et al., 2005; Kritten et al., 2010), supported by detailed photochemical modelling of NOy(NOx(=NO + NO2) + NO3+ 2N2O5+ ClONO2+ HO2NO2+ BrONO2+ HNO3) photochemistry and a non-linear least square fitting of the model result to the NO2observations. Simulations are initialised with O3measured by direct sun observations, the NOypartitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding-Balloon-borne version) observations in similar air masses at night-time, and all other relevant species from simulations of the SLIMCAT (Single Layer Isentropic Model of Chemistry And Transport) chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. As a consequence, at 30 km altitude, the N2O5lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5(λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid-and upper stratosphere, but not to an extent to be important for global ozone.
- Published
- 2014
38. Chapter 3: Polar Ozone
- Author
-
Dameris, M, Godin Beekmann, S, Alexander, S, Braesicke, P, Chipperfield, M, de Laat, J, Orsolini, Y, Rex, M, Santee, M, van der A, R., Cionni, I., Dhomse, S., Diaz, S, Engel, I., von der Gathen, P., Grooß, J. U., Hassler, B, Horowitz, L., Kreher, K, Kunze, M., Langematz, U, Manney, Gl, Müller, R, Pitari, Giovanni, Pitts, M, Poole, L., Schofield, R, Tilmes, S., and Weber, M.
- Published
- 2014
39. A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS): linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine
- Author
-
Hossaini, R., primary, Patra, P. K., additional, Leeson, A. A., additional, Krysztofiak, G., additional, Abraham, N. L., additional, Andrews, S. J., additional, Archibald, A. T., additional, Aschmann, J., additional, Atlas, E. L., additional, Belikov, D. A., additional, Bönisch, H., additional, Carpenter, L. J., additional, Dhomse, S., additional, Dorf, M., additional, Engel, A., additional, Feng, W., additional, Fuhlbrügge, S., additional, Griffiths, P. T., additional, Harris, N. R. P., additional, Hommel, R., additional, Keber, T., additional, Krüger, K., additional, Lennartz, S. T., additional, Maksyutov, S., additional, Mantle, H., additional, Mills, G. P., additional, Miller, B., additional, Montzka, S. A., additional, Moore, F., additional, Navarro, M. A., additional, Oram, D. E., additional, Pfeilsticker, K., additional, Pyle, J. A., additional, Quack, B., additional, Robinson, A. D., additional, Saikawa, E., additional, Saiz-Lopez, A., additional, Sala, S., additional, Sinnhuber, B.-M., additional, Taguchi, S., additional, Tegtmeier, S., additional, Lidster, R. T., additional, Wilson, C., additional, and Ziska, F., additional
- Published
- 2016
- Full Text
- View/download PDF
40. On the ambiguous nature of the 11 year solar cycle signal in upper stratospheric ozone
- Author
-
Dhomse, S. S., primary, Chipperfield, M. P., additional, Damadeo, R. P., additional, Zawodny, J. M., additional, Ball, W. T., additional, Feng, W., additional, Hossaini, R., additional, Mann, G. W., additional, and Haigh, J. D., additional
- Published
- 2016
- Full Text
- View/download PDF
41. Revisiting the hemispheric asymmetry in midlatitude ozone changes following the Mount Pinatubo eruption:a 3-D model study
- Author
-
Dhomse, S. S., Chipperfield, M. P., Feng, W., Hossaini, Ryan, Mann, G. W., Santee, M. L., Dhomse, S. S., Chipperfield, M. P., Feng, W., Hossaini, Ryan, Mann, G. W., and Santee, M. L.
- Abstract
Following the eruption of Mount Pinatubo, satellite and in situ measurements showed a large enhancement in stratospheric aerosol in both hemispheres, but significant midlatitude column O3 depletion was observed only in the north. We use a three-dimensional chemical transport model to determine the mechanisms behind this hemispheric asymmetry. The model, forced by European Centre for Medium-Range Weather Forecasts ERA-Interim reanalyses and updated aerosol surface area density, successfully simulates observed large column NO2 decreases and the different extents of ozone depletion in the two hemispheres. The chemical ozone loss is similar in the Northern (NH) and Southern Hemispheres (SH), but the contrasting role of dynamics increases the depletion in the NH and decreases it in the SH. The relevant SH dynamics are not captured as well by earlier ERA-40 reanalyses. Overall, the smaller SH column O3 depletion can be attributed to dynamical variability and smaller SH background lower stratosphere O3 concentrations.
- Published
- 2015
42. Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone
- Author
-
Hossaini, R., Chipperfield, M. P., Montzka, S. A., Rap, A., Dhomse, S., Feng, W., Hossaini, R., Chipperfield, M. P., Montzka, S. A., Rap, A., Dhomse, S., and Feng, W.
- Abstract
Halogens released from long-lived anthropogenic substances, such as chlorofluorocarbons, are the principal cause of recent depletion of stratospheric ozone, a greenhouse gas(1-3). Recent observations show that very short-lived substances, with lifetimes generally under six months, are also an important source of stratospheric halogens(4,5). Short-lived bromine substances are produced naturally by seaweed and phytoplankton, whereas short-lived chlorine substances are primarily anthropogenic. Here we used a chemical transport model to quantify the depletion of ozone in the lower stratosphere from short-lived halogen substances, and a radiative transfer model to quantify the radiative effects of that ozone depletion. According to our simulations, ozone loss from short-lived substances had a radiative effect nearly half that from long-lived halocarbons in 2011 and, since pre-industrial times, has contributed a total of about -0.02 W m(-2) to global radiative forcing. We find natural short-lived bromine substances exert a 3.6 times larger ozone radiative effect than long-lived halocarbons, normalized by halogen content, and show atmospheric levels of dichloromethane, a short-lived chlorine substance not controlled by the Montreal Protocol, are rapidly increasing. We conclude that potential further significant increases in the atmospheric abundance of short-lived halogen substances, through changing natural processes(6-8) or continued anthropogenic emissions(9), could be important for future climate.
- Published
- 2015
43. Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol
- Author
-
Hossaini, R., Chipperfield, M. P., Saiz-Lopez, A., Harrison, J. J., von Glasow, R., Sommariva, R., Atlas, E., Navarro, M., Montzka, S. A., Feng, W., Dhomse, S., Harth, C., Mühle, J., Lunder, C., O'Doherty, S., Young, D., Reimann, S., Vollmer, M. K., Krummel, P. B., Bernath, P. F., Hossaini, R., Chipperfield, M. P., Saiz-Lopez, A., Harrison, J. J., von Glasow, R., Sommariva, R., Atlas, E., Navarro, M., Montzka, S. A., Feng, W., Dhomse, S., Harth, C., Mühle, J., Lunder, C., O'Doherty, S., Young, D., Reimann, S., Vollmer, M. K., Krummel, P. B., and Bernath, P. F.
- Abstract
We have developed a chemical mechanism describing the tropospheric degradation of chlorine containing very short-lived substances (VSLS). The scheme was included in a global atmospheric model and used to quantify the stratospheric injection of chlorine from anthropogenic VSLS ( inline image) between 2005 and 2013. By constraining the model with surface measurements of chloroform (CHCl3), dichloromethane (CH2Cl2), tetrachloroethene (C2Cl4), trichloroethene (C2HCl3), and 1,2-dichloroethane (CH2ClCH2Cl), we infer a 2013 inline image mixing ratio of 123 parts per trillion (ppt). Stratospheric injection of source gases dominates this supply, accounting for ∼83% of the total. The remainder comes from VSLS-derived organic products, phosgene (COCl2, 7%) and formyl chloride (CHClO, 2%), and also hydrogen chloride (HCl, 8%). Stratospheric inline image increased by ∼52% between 2005 and 2013, with a mean growth rate of 3.7 ppt Cl/yr. This increase is due to recent and ongoing growth in anthropogenic CH2Cl2—the most abundant chlorinated VSLS not controlled by the Montreal Protocol.
- Published
- 2015
44. Satellite observations of stratospheric hydrogen fluoride and comparisons with SLIMCAT calculations
- Author
-
Harrison, J. J., primary, Chipperfield, M. P., additional, Boone, C. D., additional, Dhomse, S. S., additional, Bernath, P. F., additional, Froidevaux, L., additional, Anderson, J., additional, and Russell, J., additional
- Published
- 2015
- Full Text
- View/download PDF
45. Evolving particle size is the key to improved volcanic forcings
- Author
-
Mann, Graham, primary, Dhomse, S, additional, Deshler, T, additional, Timmreck, C, additional, Schmidt, A, additional, Neely, R, additional, and Thomason, L, additional
- Published
- 2015
- Full Text
- View/download PDF
46. Global OH abundance and lifetime of long-lived OH-removal species inferred from CH3CCl3: Implications from box model inversion analysis and flux-based CCMs
- Author
-
Liang, Q, Chipperfield, Mp, Rigby, M, Morganstern, O, Velders, Gjm, Abraham, L, Braesicke, P, Dhomse, S, Fleming, El, Hardiman, S, Iachetti, D, Jackman, Ch, Kinnison, De, Pitari, Giovanni, Rozanov, E, Stenke, A, and Tummon, F.
- Subjects
Lifetime ,OH-removal species ,CCMs - Published
- 2013
47. Chapter 5: Model Estimates of Lifetimes
- Author
-
Chipperfield, M., Liang, Q., Abraham, L., Bekki, S., Braesicke, P., Dhomse, S., Di Genova, G, Fleming, E. L., Hardiman, S., Iachetti, D, Jackman, C. H., Kinnison, D. E., Marchand, M., Pitari, Giovanni, Rozanov, E., Stenke, A., and Tummonet, F.
- Subjects
Global modeling ,Ozone depleting substances ,Stratospheric lifetimes - Published
- 2013
48. Growth in stratospheric chlorine from short‐lived chemicals not controlled by the Montreal Protocol
- Author
-
Hossaini, R., primary, Chipperfield, M. P., additional, Saiz‐Lopez, A., additional, Harrison, J. J., additional, Glasow, R., additional, Sommariva, R., additional, Atlas, E., additional, Navarro, M., additional, Montzka, S. A., additional, Feng, W., additional, Dhomse, S., additional, Harth, C., additional, Mühle, J., additional, Lunder, C., additional, O'Doherty, S., additional, Young, D., additional, Reimann, S., additional, Vollmer, M. K., additional, Krummel, P. B., additional, and Bernath, P. F., additional
- Published
- 2015
- Full Text
- View/download PDF
49. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol
- Author
-
Chipperfield, M. P., primary, Dhomse, S. S., additional, Feng, W., additional, McKenzie, R. L., additional, Velders, G.J.M., additional, and Pyle, J. A., additional
- Published
- 2015
- Full Text
- View/download PDF
50. Evaluation of a regional air quality model using satellite column NO<sub>2</sub>: treatment of observation errors and model boundary conditions and emissions
- Author
-
Pope, R. J., primary, Chipperfield, M. P., additional, Savage, N. H., additional, Ordóñez, C., additional, Neal, L. S., additional, Lee, L. A., additional, Dhomse, S. S., additional, Richards, N. A. D., additional, and Keslake, T. D., additional
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.