1. Small Antisense DNA-Based Gene Silencing Enables Cell-Free Bacteriophage Manipulation and Genome Replication.
- Author
-
Vogele K, Falgenhauer E, von Schönberg S, Simmel FC, and Pirzer T
- Subjects
- Bacteriophage T7 genetics, Capsid Proteins antagonists & inhibitors, Capsid Proteins genetics, Capsid Proteins metabolism, Cell-Free System, Luminescent Proteins genetics, Luminescent Proteins metabolism, Promoter Regions, Genetic, Protein Biosynthesis, RNA, Messenger metabolism, Transcription, Genetic, Virus Replication, Bacteriophage T7 physiology, DNA, Antisense metabolism, Gene Silencing, Genome, Viral
- Abstract
Cell-free systems allow interference with gene expression processes without requiring elaborate genetic engineering procedures. This makes it ideally suited for rapid prototyping of synthetic biological parts. Inspired by nature's strategies for the control of gene expression via short antisense RNA molecules, we here investigated the use of small DNA (sDNA) for translational inhibition in the context of cell-free protein expression. We designed sDNA molecules to be complementary to the ribosome binding site (RBS) and the downstream coding sequence of targeted mRNA molecules. Depending on sDNA concentration and the promoter used for transcription of the mRNA, this resulted in a reduction of gene expression of targeted genes by up to 50-fold. We applied the cell-free sDNA technique (CF-sDNA) to modulate cell-free gene expression from the native T7 phage genome by suppressing the production of the major capsid protein of the phage. This resulted in a reduced phage titer, but at the same time drastically improved cell-free replication of the phage genome, which we utilized to amplify the T7 genome by more than 15 000-fold in a droplet-based serial dilution experiment. Our simple antisense sDNA approach extends the possibilities to exert translational control in cell-free expression systems, which should prove useful for cell-free prototyping of native phage genomes and also cell-free phage manipulation.
- Published
- 2021
- Full Text
- View/download PDF