1. Network evolution controlling strain-induced damage and self-healing of elastomers with dynamic bonds
- Author
-
Yin, Yikai, Mohanty, Shaswat, Cooper, Christopher B., Bao, Zhenan, and Cai, Wei
- Subjects
Condensed Matter - Soft Condensed Matter ,Condensed Matter - Materials Science - Abstract
Highly stretchable and self-healable supramolecular elastomers are promising materials for future soft electronics, biomimetic systems, and smart textiles, due to their dynamic cross-linking bonds. The dynamic or reversible nature of the cross-links gives rise to interesting macroscopic responses in these materials such as self-healing and rapid stress-relaxation. However, the relationship between bond activity and macroscopic mechanical response, and the self-healing properties of these dynamic polymer networks (DPNs) remains poorly understood. Using coarse-grained molecular dynamics (CGMD) simulations, we reveal a fundamental connection between the macroscopic behaviors of DPNs and the shortest paths between distant nodes in the polymer network. Notably, the trajectories of the material on the shortest path-strain map provide key insights into understanding the stress-strain hysteresis, anisotropy, stress relaxation, and self-healing of DPNs. Based on CGMD simulations under various loading histories, we formulate a set of empirical rules that dictate how the shortest path interacts with stress and strain. This lays the foundation for the development of a physics-based theory centered around the non-local microstructural feature of shortest paths to predict the mechanical behavior of DPNs., Comment: 17 pages, 7 figures
- Published
- 2024