45 results on '"Chabi J"'
Search Results
2. Turbulent Distortion of Condensate Accretion
- Author
-
Hazoume, R, Orou Chabi, J, and Johnson, J. A., III
- Subjects
Fluid Mechanics And Thermodynamics - Abstract
When a simple model for the relationship between the density-temperature fluctuation correlation and mean values is used, we determine that the rate of change of turbulent intensity can influence directly the accretion rate of droplets. Considerable interest exists in the accretion rate for condensates in nonequilibrium flow with icing and the potential role which reactant accretion can play in nonequilibrium exothermic reactant processes. Turbulence is thought to play an important role in such flows. It has already been experimentally determined that turbulence influences the sizes of droplets in the heterogeneous nucleation of supersaturated vapors. This paper addresses the issue of the possible influence of turbulence on the accretion rate of droplets.
- Published
- 1997
3. A biological test to quantify pyrethroid in impregnated nets
- Author
-
Martin, T., primary, Chandre, F., additional, Chabi, J., additional, Guillet, P. F., additional, Akogbeto, M., additional, and Hougard, J. M., additional
- Published
- 2006
- Full Text
- View/download PDF
4. Increase in susceptibility to insecticides with aging of wild Anopheles gambiae mosquitoes from Côte d’Ivoire
- Author
-
Chouaibou Mouhamadou S, Chabi Joseph, Bingham Georgina V, Knox Tessa B, N’Dri Louis, Kesse Nestor B, Bonfoh Bassirou, and Jamet Helen V
- Subjects
Anopheles gambiae age ,Insecticide resistance ,Vector control ,Infectious and parasitic diseases ,RC109-216 - Abstract
Abstract Background Appropriate monitoring of vector insecticide susceptibility is required to provide the rationale for optimal insecticide selection in vector control programs. Methods In order to assess the influence of mosquito age on susceptibility to various insecticides, field-collected larvae of An. gambiae s.l. from Tiassalé were reared to adults. Females aged 1, 2, 3, 5 and 10 days were exposed to 5 insecticides (deltamethrin, permethrin, DDT, malathion and propoxur) using WHO susceptibility test kits. Outcome measures included the LT50 (exposure time required to achieve 50% knockdown), the RR (resistance ratio, i.e. a calculation of how much more resistant the wild population is compared with a standard susceptible strain) and the mortality rate following 1 hour exposure, for each insecticide and each mosquito age group. Results There was a positive correlation between the rate of knockdown and mortality for all the age groups and for all insecticides tested. For deltamethrin, the RR50 was highest for 2 day old and lowest for 10 day old individuals. Overall, mortality was lowest for 2 and 3 day old individuals and significantly higher for 10 day old individuals (P 50 was highest for 1 to 3 day old individuals and lowest for 10 day old individuals and mortality was lowest for 1 to 3 day old individuals, intermediate for 5 day old and highest for 10 day old individuals. DDT did not display any knockdown effect and mortality was low for all mosquito age groups (50 was low (1.54 - 2.77) and mortality was high (>93%) for all age groups. With propoxur, no knockdown effect was observed for 1, 2 and 3 day old individuals and a very low level of mortality was observed (< 4%), which was significantly higher for 5 and 10 day old individuals (30%, P Conclusion Results indicate that for An. gambiae s.l. adults derived from wild-collected larvae, there was an influence of age on insecticide susceptibility status, with younger individuals (1 to 3 days old) more resistant than older mosquitoes. This indicates that the use of 1 – 2 day old mosquitoes in susceptibility assays as recommended by the WHO should facilitate detection of resistance at the stage where the highest rate of the resistance phenotype is present.
- Published
- 2012
- Full Text
- View/download PDF
5. Efficacy of an insecticide paint against malaria vectors and nuisance in West Africa - Part 2: Field evaluation
- Author
-
Hougard Jean-Marc, Akogbeto Martin, Chandre Fabrice, Chabi Joseph, Mosqueira Beatriz, Carnevale Pierre, and Mas-Coma Santiago
- Subjects
Arctic medicine. Tropical medicine ,RC955-962 ,Infectious and parasitic diseases ,RC109-216 - Abstract
Abstract Background Widespread resistance of the main malaria vector Anopheles gambiae to pyrethroids reported in many African countries and operational drawbacks to current IRS methods suggest the convenience of exploring new products and approaches for vector control. Insecticide paint Inesfly 5A IGR™, containing two organophosphates (OPs), chlorpyrifos and diazinon, and one insect growth regulator (IGR), pyriproxyfen, was tested in Benin, West Africa, for 12 months. Methods Field trials were conducted in six experimental huts that were randomly allocated to one or two layers of insecticide at 1 Kg/6 m2 or control. Evaluations included: (i) early mosquito collection, (ii) mosquito release experiments, (iii) residual efficacy tests and (iv) distance tests. Early mosquito collections were performed on local populations of pyrethroid-resistant An. gambiae and Culex quinquefasciatus. As per WHOPES phase II procedures, four entomological criteria were evaluated: deterrence, excito-repellence, blood-feeding inhibition and mortality. Mosquito release experiments were done using local malaria-free An. gambiae females reared at the CREC insectarium. Residual efficacy tests and distance tests were performed using reference susceptible strains of An. gambiae and Cx. quinquefasciatus. Results Six months after treatment, mortality rates were still 90-100% against pyrethroid-resistant mosquito populations in experimental huts. At nine months, mortality rates in huts treated with two layers was still about 90-93% against An. gambiae and 55% against Cx. quinquefasciatus. Malaria-free local mosquito release experiments yielded a 90% blood-feeding inhibition in the absence of a physical barrier. A long-term residual efficacy of 12 months was observed by WHO-bioassays in huts treated with two layers (60-80%). Mortality after an overnight exposition at distances of 1 meter was 96-100% for up to 12 months. Conclusion The encouraging results obtained on the insecticide paint Inesfly 5A IGR™ in terms of mortality, be it in direct contact or at a distance, and its new operational approach could constitute an additional option in malaria control efforts in areas of pyrethroid resistance. Phase III studies will be performed to assess the product's epidemiological impact and sociological acceptance.
- Published
- 2010
- Full Text
- View/download PDF
6. Culicidae diversity, malaria transmission and insecticide resistance alleles in malaria vectors in Ouidah-Kpomasse-Tori district from Benin (West Africa): A pre-intervention study
- Author
-
Djènontin Armel, Bio-Bangana Sahabi, Moiroux Nicolas, Henry Marie-Claire, Bousari Olayidé, Chabi Joseph, Ossè Razaki, Koudénoukpo Sébastien, Corbel Vincent, Akogbéto Martin, and Chandre Fabrice
- Subjects
Infectious and parasitic diseases ,RC109-216 - Abstract
Abstract Background To implement an Insecticide Resistance Management (IRM) strategy through a randomized controlled trial (phase III), 28 villages were selected in southern Benin. No recent entomological data being available in these villages, entomological surveys were performed between October 2007 and May 2008, before vector control strategies implementation, to establish baseline data. Methods Mosquitoes were sampled by human landing collection (16 person-nights per village per survey per village) during 5 surveys. Mosquitoes were identified morphologically and by molecular methods. The Plasmodium falciparum circumsporozoïte indexes were measured by ELISA, and the entomological inoculation rates (EIRs) were calculated. Molecular detection of pyrethroid knock down resistance (Kdr) and of insensitive acetylcholinesterase were performed. Results 44,693 mosquitoes belonging to 28 different species were caught from October 2007 to May 2008. Among mosquitoes caught, 318 were An. gambiae s.s., 2 were An. nili, 568 were An. funestus s.s., and one individual was An. leesoni. EIR was 2.05 ± 1.28 infective bites per human per 100 nights on average, of which 0.67 ± 0.60 were from An. funestus and 1.38 ± 0.94 infective bites were from An. gambiae. Important variations were noted between villages considering mosquito density and malaria transmission indicating a spatial heterogeneity in the study area. The kdr allelic frequency was 28.86% in An. gambiae s.s. on average and significantly increases from October 2007 (10.26%) to May 2008 (33.87%) in M molecular form of An. gambiae s.s. Ace 1 mutation was found in S molecular of An. gambiae s.s at a low frequency (< 1%). Conclusion This study updates information on mosquito diversity and malaria risk in rural villages from south Benin. It showed a high spatial heterogeneity in mosquito distribution and malaria transmission and underlines the need of further investigations of biological, ecological, and behavioral traits of malaria vectors species and forms. This study is a necessary prerequisite to cartography malaria risk and to improve vector control operations in southern Benin.
- Published
- 2010
- Full Text
- View/download PDF
7. New protective battle-dress impregnated against mosquito vector bites
- Author
-
Pennetier Cédric, Chabi Joseph, Martin Thibaud, Chandre Fabrice, Rogier Christophe, Hougard Jean-Marc, and Pages Frédéric
- Subjects
Infectious and parasitic diseases ,RC109-216 - Abstract
Abstract Background Mixing repellent and organophosphate (OP) insecticides to better control pyrethroid resistant mosquito vectors is a promising strategy developed for bed net impregnation. Here, we investigated the opportunity to adapt this strategy to personal protection in the form of impregnated clothes. Methods We compared standard permethrin impregnated uniforms with uniforms manually impregnated with the repellent KBR3023 alone and in combination with an organophosphate, Pirimiphos-Methyl (PM). Tests were carried out with Aedes aegypti, the dengue fever vector, at dusk in experimental huts. Results Results showed that the personal protection provided by repellent KBR3023-impregnated uniforms is equal to permethrin treated uniforms and that KBR3023/PM-impregnated uniforms are more protective. Conclusion The use of repellents alone or combined with OP on clothes could be promising for personal protection of military troops and travellers if residual activity of the repellents is extended and safety is verified.
- Published
- 2010
- Full Text
- View/download PDF
8. Field efficacy of a new mosaic long-lasting mosquito net (PermaNet® 3.0) against pyrethroid-resistant malaria vectors: a multi centre study in Western and Central Africa
- Author
-
Pigeon Olivier, Nwane Philippe, Etang Josiane, Dabiré Roch K, Chabi Joseph, Corbel Vincent, Akogbeto Martin, and Hougard Jean-Marc
- Subjects
Arctic medicine. Tropical medicine ,RC955-962 ,Infectious and parasitic diseases ,RC109-216 - Abstract
Abstract Background Due to the spread of pyrethroid-resistance in malaria vectors in Africa, new strategies and tools are urgently needed to better control malaria transmission. The aim of this study was to evaluate the performances of a new mosaic long-lasting insecticidal net (LLIN), i.e. PermaNet® 3.0, against wild pyrethroid-resistant Anopheles gambiae s.l. in West and Central Africa. Methods A multi centre experimental hut trial was conducted in Malanville (Benin), Vallée du Kou (Burkina Faso) and Pitoa (Cameroon) to investigate the exophily, blood feeding inhibition and mortality induced by PermaNet® 3.0 (i.e. a mosaic net containing piperonyl butoxide and deltamethrin on the roof) comparatively to the WHO recommended PermaNet® 2.0 (unwashed and washed 20-times) and a conventionally deltamethrin-treated net (CTN). Results The personal protection and insecticidal activity of PermaNet 3.0 and PermaNet® 2.0 were excellent (>80%) in the "pyrethroid-tolerant" area of Malanville. In the pyrethroid-resistance areas of Pitoa (metabolic resistance) and Vallée du Kou (presence of the L1014F kdr mutation), PermaNet® 3.0 showed equal or better performances than PermaNet® 2.0. It should be noted however that the deltamethrin content on PermaNet® 3.0 was up to twice higher than that of PermaNet® 2.0. Significant reduction of efficacy of both LLIN was noted after 20 washes although PermaNet® 3.0 still fulfilled the WHO requirement for LLIN. Conclusion The use of combination nets for malaria control offers promising prospects. However, further investigations are needed to demonstrate the benefits of using PermaNet® 3.0 for the control of pyrethroid resistant mosquito populations in Africa.
- Published
- 2010
- Full Text
- View/download PDF
9. Control of pyrethroid and DDT-resistant Anopheles gambiae by application of indoor residual spraying or mosquito nets treated with a long-lasting organophosphate insecticide, chlorpyrifos-methyl
- Author
-
Chabi Joseph, Odjo Abibathou, Boko Pelagie, N'Guessan Raphael, Akogbeto Martin, and Rowland Mark
- Subjects
Arctic medicine. Tropical medicine ,RC955-962 ,Infectious and parasitic diseases ,RC109-216 - Abstract
Abstract Background Scaling up of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) with support from the Global Fund and President's Malaria Initiative is providing increased opportunities for malaria control in Africa. The most cost-effective and longest-lasting residual insecticide DDT is also the most environmentally persistent. Alternative residual insecticides exist, but are too short-lived or too expensive to sustain. Dow Agrosciences have developed a microencapsulated formulation (CS) of the organophosphate chlorpyrifos methyl as a cost-effective, long-lasting alternative to DDT. Methods Chlorpyrifos methyl CS was tested as an IRS or ITN treatment in experimental huts in an area of Benin where Anopheles gambiae and Culex quinquefasiactus are resistant to pyrethroids, but susceptible to organophosphates. Efficacy and residual activity was compared to that of DDT and the pyrethroid lambdacyalothrin. Results IRS with chlorpyrifos methyl killed 95% of An. gambiae that entered the hut as compared to 31% with lambdacyhalothrin and 50% with DDT. Control of Cx. quinquefasciatus showed a similar trend; although the level of mortality with chlorpyrifos methyl was lower (66%) it was still much higher than for DDT (14%) or pyrethroid (15%) treatments. Nets impregnated with lambdacyhalothrin were compromized by resistance, killing only 30% of An. gambiae and 8% of Cx. quinquefasciatus. Nets impregnated with chlorpyrifos methyl killed more (45% of An gambiae and 15% of Cx. quinquefasciatus), but its activity on netting was of short duration. Contact bioassays on the sprayed cement-sand walls over the nine months of monitoring showed no loss of activity of chlorpyrifos methyl, whereas lambdacyhalothrin and DDT lost activity within a few months of spraying. Conclusion As an IRS treatment against pyrethroid resistant mosquitoes chlorpyrifos methyl CS outperformed DDT and lambdacyhalothrin. In IRS campaigns, chlorpyrifos methyl CS should show higher, more-sustained levels of malaria transmission control than conventional formulations of DDT or pyrethroids. The remarkable residual activity indicates that cost-effective alternatives to DDT are feasible through modern formulation technology.
- Published
- 2010
- Full Text
- View/download PDF
10. Managing insecticide resistance in malaria vectors by combining carbamate-treated plastic wall sheeting and pyrethroid-treated bed nets
- Author
-
Pennetier Cédric, Irish Seth, Baldet Thierry, Chabi Joseph, Djènontin Armel, Hougard Jean-Marc, Corbel Vincent, Akogbéto Martin, and Chandre Fabrice
- Subjects
Arctic medicine. Tropical medicine ,RC955-962 ,Infectious and parasitic diseases ,RC109-216 - Abstract
Abstract Background Pyrethroid resistance is now widespread in Anopheles gambiae, the major vector for malaria in sub-Saharan Africa. This resistance may compromise malaria vector control strategies that are currently in use in endemic areas. In this context, a new tool for management of resistant mosquitoes based on the combination of a pyrethroid-treated bed net and carbamate-treated plastic sheeting was developed. Methods In the laboratory, the insecticidal activity and wash resistance of four carbamate-treated materials: a cotton/polyester blend, a polyvinyl chloride tarpaulin, a cotton/polyester blend covered on one side with polyurethane, and a mesh of polypropylene fibres was tested. These materials were treated with bendiocarb at 100 mg/m2 and 200 mg/m2 with and without a binding resin to find the best combination for field studies. Secondly, experimental hut trials were performed in southern Benin to test the efficacy of the combined use of a pyrethroid-treated bed net and the carbamate-treated material that was the most wash-resistant against wild populations of pyrethroid-resistant An. gambiae and Culex quinquefasciatus. Results Material made of polypropylene mesh (PPW) provided the best wash resistance (up to 10 washes), regardless of the insecticide dose, the type of washing, or the presence or absence of the binding resin. The experimental hut trial showed that the combination of carbamate-treated PPW and a pyrethroid-treated bed net was extremely effective in terms of mortality and inhibition of blood feeding of pyrethroid-resistant An. gambiae. This efficacy was found to be proportional to the total surface of the walls. This combination showed a moderate effect against wild populations of Cx. quinquefasciatus, which were strongly resistant to pyrethroid. Conclusion These preliminary results should be confirmed, including evaluation of entomological, parasitological, and clinical parameters. Selective pressure on resistance mechanisms within the vector population, effects on other pest insects, and the acceptability of this management strategy in the community also need to be evaluated.
- Published
- 2009
- Full Text
- View/download PDF
11. Parallel Evolution in Mosquito Vectors-A Duplicated Esterase Locus is Associated With Resistance to Pirimiphos-methyl in Anopheles gambiae.
- Author
-
Nagi SC, Lucas ER, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Djogbénou LS, Medjigbodo AA, Edi CV, Ketoh GK, Koudou BG, Ashraf F, Clarkson CS, Miles A, Weetman D, and Donnelly MJ
- Subjects
- Animals, Evolution, Molecular, Anopheles genetics, Organothiophosphorus Compounds, Insecticide Resistance genetics, Mosquito Vectors genetics, Insecticides pharmacology, Esterases genetics
- Abstract
The primary control methods for the African malaria mosquito, Anopheles gambiae, are based on insecticidal interventions. Emerging resistance to these compounds is therefore of major concern to malaria control programs. The organophosphate (OP), pirimiphos-methyl, is a relatively new chemical in the vector control armory but is now widely used in indoor-residual spray campaigns. While generally effective, phenotypic resistance has developed in some areas in malaria vectors. Here, we used a population genomic approach to identify novel mechanisms of resistance to pirimiphos-methyl in A. gambiae s.l mosquitoes. In multiple populations, we found large and repeated signals of selection at a locus containing a cluster of detoxification enzymes, some of whose orthologs are known to confer resistance to OPs in Culex pipiens. Close examination revealed a pair of alpha-esterases, Coeae1f and Coeae2f, and a complex and diverse pattern of haplotypes under selection in A. gambiae, A. coluzzii and A. arabiensis. As in C. pipiens, copy number variants have arisen at this locus. We used diplotype clustering to examine whether these signals arise from parallel evolution or adaptive introgression. Using whole-genome sequenced phenotyped samples, we found that in West Africa, a copy number variant in A. gambiae is associated with resistance to pirimiphos-methyl. Overall, we demonstrate a striking example of contemporary parallel evolution which has important implications for malaria control programs., (© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2024
- Full Text
- View/download PDF
12. Distribution and dynamics of Anopheles gambiae s.l. larval habitats in three Senegalese cities with high urban malaria incidence.
- Author
-
Ndiaye F, Diop A, Chabi J, Sturm-Ramirez K, Senghor M, Diouf EH, Samb B, Diedhiou SM, Thiaw O, Zohdy S, Dotson E, Sene D, Diouf MB, Koscelnik V, Gerberg L, Bangoura A, Clark T, Faye O, Dia I, Konate L, and Niang EHA
- Subjects
- Animals, Senegal epidemiology, Incidence, Humans, Anopheles parasitology, Ecosystem, Malaria epidemiology, Malaria transmission, Larva, Mosquito Vectors parasitology, Seasons, Cities
- Abstract
Urban malaria has become a challenge for most African countries due to urbanization, with increasing population sizes, overcrowding, and movement into cities from rural localities. The rapid expansion of cities with inappropriate water drainage systems, abundance of water storage habitats, coupled with recurrent flooding represents a concern for water-associated vector borne diseases, including malaria. This situation could threaten progress made towards malaria elimination in sub-Saharan countries, including Senegal, where urban malaria has presented as a threat to national elimination gains. To assess drivers of urban malaria in Senegal, a 5-month study was carried out from August to December 2019 in three major urban areas and hotspots for malaria incidence (Diourbel, Touba, and Kaolack) including the rainy season (August-October) and partly dry season (November-December). The aim was to characterize malaria vector larval habitats, vector dynamics across both seasons, and to identify the primary eco- environmental entomological factors contributing to observed urban malaria transmission. A total of 145 Anopheles larval habitats were found, mapped, and monitored monthly. This included 32 in Diourbel, 83 in Touba, and 30 in Kaolack. The number of larval habitats fluctuated seasonally, with a decrease during the dry season. In Diourbel, 22 of the 32 monitored larval habitats (68.75%) were dried out by December and considered temporary, while the remaining 10 (31.25%) were classified as permanent. In the city of Touba 28 (33.73%) were temporary habitats, and of those 57%, 71% and 100% dried up respectively by October, November, and December. However, 55 (66.27%) habitats were permanent water storage basins which persisted throughout the study. In Kaolack, 12 (40%) permanent and 18 (60%) temporary Anopheles larval habitats were found and monitored during the study. Three malaria vectors (An. arabiensis, An. pharoensis and An. funestus s.l.) were found across the surveyed larval habitats, and An. arabiensis was found in all three cities and was the only species found in the city of Diourbel, while An. arabiensis, An. pharoensis, and An. funestus s.l. were detected in the cities of Touba and Kaolack. The spatiotemporal observations of immature malaria vectors in Senegal provide evidence of permanent productive malaria vector larval habitats year-round in three major urban centers in Senegal, which may be driving high urban malaria incidence. This study aimed to assess the presence and type of anopheline larvae habitats in urban areas. The preliminary data will better inform subsequent detailed additional studies and seasonally appropriate, cost-effective, and sustainable larval source management (LSM) strategies by the National Malaria Control Programme (NMCP)., Competing Interests: The authors have declared that no competing interests exist., (Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.)
- Published
- 2024
- Full Text
- View/download PDF
13. Reduction of malaria case incidence following the introduction of clothianidin-based indoor residual spraying in previously unsprayed districts: an observational analysis using health facility register data from Côte d'Ivoire, 2018-2022.
- Author
-
Hilton ER, Gning-Cisse N, Assi A, Eyakou M, Koffi J, Gnakou B, Kouassi B, Flatley C, Chabi J, Gbalegba C, Alex Aimain S, Yah Kokrasset C, Antoine Tanoh M, N'Gotta S, Yao O, Egou Assi H, Konan P, Davis K, Constant E, Belemvire A, Yepassis-Zembrou P, Zinzindohoue P, Kouadio B, and Burnett S
- Subjects
- Humans, Incidence, Mosquito Control, Cote d'Ivoire epidemiology, Neonicotinoids, Health Facilities, Insecticides, Malaria epidemiology, Malaria prevention & control, Guanidines, Thiazoles
- Abstract
Background: Indoor residual spraying (IRS) using neonicotinoid-based insecticides (clothianidin and combined clothianidin with deltamethrin) was deployed in two previously unsprayed districts of Côte d'Ivoire in 2020 and 2021 to complement standard pyrethroid insecticide-treated nets. This retrospective observational study uses health facility register data to assess the impact of IRS on clinically reported malaria case incidence., Methods: Health facility data were abstracted from consultation registers for the period September 2018 to April 2022 in two IRS districts and two control districts that did not receive IRS. Malaria cases reported by community health workers (CHWs) were obtained from district reports and District Health Information Systems 2. Facilities missing complete data were excluded. Controlled interrupted time series models were used to estimate the effect of IRS on monthly all-ages population-adjusted confirmed malaria cases and cases averted by IRS. Models controlled for transmission season, precipitation, vegetation, temperature, proportion of cases reported by CHWs, proportion of tested out of suspected cases and non-malaria outpatient visits., Results: An estimated 10 988 (95% CI 5694 to 18 188) malaria cases were averted in IRS districts the year following the 2020 IRS campaign, representing a 15.9% reduction compared with if IRS had not been deployed. Case incidence in IRS districts dropped by 27.7% (incidence rate ratio (IRR) 0.723, 95% CI 0.592 to 0.885) the month after the campaign. In the 8 months after the 2021 campaign, 14 170 (95% CI 13 133 to 15 025) estimated cases were averted, a 24.7% reduction, and incidence in IRS districts dropped by 37.9% (IRR 0.621, 95% CI 0.462 to 0.835) immediately after IRS. Case incidence in control districts did not change following IRS either year (p>0.05) and the difference in incidence level change between IRS and control districts was significant both years (p<0.05)., Conclusion: Deployment of clothianidin-based IRS was associated with a reduction in malaria case rates in two districts of Côte d'Ivoire following IRS deployment in 2020 and 2021., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2024
- Full Text
- View/download PDF
14. Copy number variants underlie the major selective sweeps in insecticide resistance genes in Anopheles arabiensis from Tanzania.
- Author
-
Lucas ER, Nagi SC, Kabula B, Batengana B, Kisinza W, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Van't Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Clarkson CS, Miles A, Weetman D, and Donnelly MJ
- Abstract
To keep ahead of the evolution of resistance to insecticides in mosquitoes, national malaria control programmes must make use of a range of insecticides, both old and new, while monitoring resistance mechanisms. Knowledge of the mechanisms of resistance remains limited in Anopheles arabiensis , which in many parts of Africa is of increasing importance because it is apparently less susceptible to many indoor control interventions. Furthermore, comparatively little is known in general about resistance to non-pyrethroid insecticides such as pirimiphos-methyl (PM), which are crucial for effective control in the context of resistance to pyrethroids. We performed a genome-wide association study to determine the molecular mechanisms of resistance to deltamethrin (commonly used in bednets) and PM, in An. arabiensis from two regions in Tanzania. Genomic regions of positive selection in these populations were largely driven by copy number variants (CNVs) in gene families involved in resistance to these two insecticides. We found evidence of a new gene cluster involved in resistance to PM, identifying a strong selective sweep tied to a CNV in the Coeae2g-Coeae6g cluster of carboxylesterase genes. Using complementary data from An. coluzzii in Ghana, we show that copy number at this locus is significantly associated with PM resistance. Similarly, for deltamethrin, resistance was strongly associated with a novel CNV allele in the Cyp6aa / Cyp6p cluster. Against this background of metabolic resistance, target site resistance was very rare or absent for both insecticides. Mutations in the pyrethroid target site Vgsc were at very low frequency in Tanzania, yet combining these samples with three An. arabiensis individuals from West Africa revealed a startling diversity of evolutionary origins of target site resistance, with up to 5 independent origins of Vgsc -995 mutations found within just 8 haplotypes. Thus, despite having been first recorded over 10 years ago, Vgsc resistance mutations in Tanzanian An. arabiensis have remained at stable low frequencies. Overall, our results provide a new copy number marker for monitoring resistance to PM in malaria mosquitoes, and reveal the complex picture of resistance patterns in An. arabiensis .
- Published
- 2024
- Full Text
- View/download PDF
15. Mosquito control by abatement programmes in the United States: perspectives and lessons for countries in sub-Saharan Africa.
- Author
-
Ochomo E, Rund SSC, Mthawanji RS, Antonio-Nkondjio C, Machani M, Samake S, Wolie RZ, Nsango S, Lown LA, Matoke-Muhia D, Kamau L, Lukyamuzi E, Njeri J, Chabi J, Akrofi OO, Ntege C, Mero V, Mwalimu C, Kiware S, Bilgo E, Traoré MM, Afrane Y, Hakizimana E, Muleba M, Orefuwa E, Chaki P, and Juma EO
- Subjects
- Animals, United States, Africa South of the Sahara, Ecology, Disease Vectors, Mosquito Vectors, Mosquito Control, Malaria epidemiology
- Abstract
Africa and the United States are both large, heterogeneous geographies with a diverse range of ecologies, climates and mosquito species diversity which contribute to disease transmission and nuisance biting. In the United States, mosquito control is nationally, and regionally coordinated and in so much as the Centers for Disease Control (CDC) provides guidance, the Environmental Protection Agency (EPA) provides pesticide registration, and the states provide legal authority and oversight, the implementation is usually decentralized to the state, county, or city level. Mosquito control operations are organized, in most instances, into fully independent mosquito abatement districts, public works departments, local health departments. In some cases, municipalities engage independent private contractors to undertake mosquito control within their jurisdictions. In sub-Saharan Africa (SSA), where most vector-borne disease endemic countries lie, mosquito control is organized centrally at the national level. In this model, the disease control programmes (national malaria control programmes or national malaria elimination programmes (NMCP/NMEP)) are embedded within the central governments' ministries of health (MoHs) and drive vector control policy development and implementation. Because of the high disease burden and limited resources, the primary endpoint of mosquito control in these settings is reduction of mosquito borne diseases, primarily, malaria. In the United States, however, the endpoint is mosquito control, therefore, significant (or even greater) emphasis is laid on nuisance mosquitoes as much as disease vectors. The authors detail experiences and learnings gathered by the delegation of African vector control professionals that participated in a formal exchange programme initiated by the Pan-African Mosquito Control Association (PAMCA), the University of Notre Dame, and members of the American Mosquito Control Association (AMCA), in the United States between the year 2021 and 2022. The authors highlight the key components of mosquito control operations in the United States and compare them to mosquito control programmes in SSA countries endemic for vector-borne diseases, deriving important lessons that could be useful for vector control in SSA., (© 2023. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
16. Urban malaria vector bionomics and human sleeping behavior in three cities in Senegal.
- Author
-
Diop A, Ndiaye F, Sturm-Ramirez K, Konate L, Senghor M, Diouf EH, Dia AK, Diedhiou S, Samb B, Sene D, Zohdy S, Dotson E, Diouf MB, Koscelnik V, Gerberg L, Bangoura A, Faye O, Clark T, Niang EHA, and Chabi J
- Subjects
- Animals, Humans, Senegal epidemiology, Cities epidemiology, Mosquito Vectors, Ecology, Malaria epidemiology, Anopheles
- Abstract
Background: Malaria is endemic in Senegal, with seasonal transmission, and the entire population is at risk. In recent years, high malaria incidence has been reported in urban and peri-urban areas of Senegal. An urban landscape analysis was conducted in three cities to identify the malaria transmission indicators and human behavior that may be driving the increasing malaria incidence occurring in urban environments. Specifically, mosquito vector bionomics and human sleeping behaviors including outdoor sleeping habits were assessed to guide the optimal deployment of targeted vector control interventions., Methods: Longitudinal entomological monitoring using human landing catches and pyrethrum spray catches was conducted from May to December 2019 in Diourbel, Kaolack, and Touba, the most populous cities in Senegal after the capital Dakar. Additionally, a household survey was conducted in randomly selected houses and residential Koranic schools in the same cities to assess house structures, sleeping spaces, sleeping behavior, and population knowledge about malaria and vector control measures., Results: Of the 8240 Anopheles mosquitoes collected from all the surveyed sites, 99.4% (8,191) were An. gambiae s.l., and predominantly An. arabiensis (99%). A higher number of An. gambiae s.l. were collected in Kaolack (77.7%, n = 6496) than in Diourbel and Touba. The overall mean human biting rate was 14.2 bites per person per night (b/p/n) and was higher outdoors (15.9 b/p/n) than indoors (12.5 b/p/n). The overall mean entomological inoculation rates ranged from 3.7 infectious bites per person per year (ib/p/y) in Diourbel to 40.2 ib/p/y in Kaolack. Low anthropophilic rates were recorded at all sites (average 35.7%). Of the 1202 households surveyed, about 24.3% of household members slept outdoors, except during the short rainy season between July and October, despite understanding how malaria is transmitted and the vector control measures used to prevent it., Conclusion: Anopheles arabiensis was the primary malaria vector in the three surveyed cities. The species showed an outdoor biting tendency, which represents a risk for the large proportion of the population sleeping outdoors. As all current vector control measures implemented in the country target endophilic vectors, these data highlight potential gaps in population protection and call for complementary tools and approaches targeting outdoor biting malaria vectors., (© 2023. BioMed Central Ltd., part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
17. Genome-wide association studies reveal novel loci associated with pyrethroid and organophosphate resistance in Anopheles gambiae and Anopheles coluzzii.
- Author
-
Lucas ER, Nagi SC, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Djogbénou LS, Medjigbodo AA, Edi CV, Kétoh GK, Koudou BG, Van't Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Cerdeira LT, Clarkson CS, Kwiatkowski DP, Miles A, Donnelly MJ, and Weetman D
- Subjects
- Animals, Genome-Wide Association Study, Organophosphates pharmacology, Anopheles genetics, Insecticides pharmacology, Pyrethrins pharmacology
- Abstract
Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of malaria control, but the genetics of resistance are only partially understood. We performed a large scale multi-country genome-wide association study of resistance to two widely used insecticides: deltamethrin and pirimiphos-methyl, using sequencing data from An. gambiae and An. coluzzii from ten locations in West Africa. Resistance was highly multi-genic, multi-allelic and variable between populations. While the strongest and most consistent association with deltamethrin resistance came from Cyp6aa1, this was based on several independent copy number variants (CNVs) in An. coluzzii, and on a non-CNV haplotype in An. gambiae. For pirimiphos-methyl, signals included Ace1, cytochrome P450s, glutathione S-transferases and the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes showed evidence of cross-resistance to both insecticides. These locally-varying, multi-allelic patterns highlight the challenges involved in genomic monitoring of resistance, and may form the basis for improved surveillance methods., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
18. Efficacy of partial spraying of SumiShield, Fludora Fusion and Actellic against wild populations of Anopheles gambiae s.l. in experimental huts in Tiassalé, Côte d'Ivoire.
- Author
-
Chabi J, Seyoum A, Edi CVA, Kouassi BL, Yihdego Y, Oxborough R, Gbalegba CGN, Johns B, Desale S, Irish SR, Gimnig JE, Carlson JS, Yoshimizu M, Armistead JS, Belemvire A, Gerberg L, George K, and Kirby M
- Subjects
- Animals, Mosquito Control methods, Cote d'Ivoire, Mosquito Vectors, Insecticide Resistance, Insecticides pharmacology, Anopheles, Malaria prevention & control, Pyrethrins pharmacology
- Abstract
From August 2020 to June 2021, we assessed the efficacy of SumiShield 50WG (clothianidin), Fludora Fusion 56.25WP-SB (mixture of clothianidin and deltamethrin) and Actellic 300CS (pirimiphos-methyl) in experimental huts when partially sprayed against wild, free-flying populations of Anopheles gambiae s.l. in Tiassalé, Côte d'Ivoire. A one-month baseline period of mosquito collections was conducted to determine mosquito density and resting behavior in unsprayed huts, after which two treatments of partial indoor residual spraying (IRS) were tested: spraying only the top half of walls + ceilings or only the bottom half of walls + ceilings. These were compared to fully sprayed applications using the three IRS insecticide formulations, during twenty nights per month of collection for nine consecutive months. Mortality was assessed at the time of collection, and after a 24 h holding period (Actellic) or up to 120 h (SumiShield and Fludora Fusion). Unsprayed huts were used as a negative control. The efficacy of each partially sprayed treatment of each insecticide was compared monthly to the fully sprayed huts over the study period with a non-inferiority margin set at 10%. The residual efficacy of each insecticide sprayed was also monitored. A total of 2197 Anopheles gambiae s.l. were collected during the baseline and 17,835 during the 9-month period after spraying. During baseline, 42.6% were collected on the bottom half versus 24.3% collected on the top half of the walls, and 33.1% on the ceilings. Over the nine-month post treatment period, 73.5% were collected on the bottom half of the wall, 11.6% collected on the top half and 14.8% on the ceilings. For Actellic, the mean mortality over the nine-month period was 88.5% [87.7, 89.3] for fully sprayed huts, 88.3% [85.1, 91.4] for bottom half + ceiling sprayed walls and 80.8% [74.5, 87.1] for the top half + ceiling sprayed huts. For Fludora Fusion an overall mean mortality of 85.6% [81.5, 89.7] was recorded for fully sprayed huts, 83.7% [82.9, 84.5] for bottom half + ceiling sprayed huts and 81.3% [79.6, 83.0] for the top half + ceiling sprayed huts. For SumiShield, the overall mean mortality was 86.7% [85.3, 88.1] for fully sprayed huts, 85.6% [85.4, 85.8] for the bottom half + ceiling sprayed huts and 76.9% [76.6, 77.3] for the top half + ceiling sprayed huts. For Fludora Fusion, both iterations of partial IRS were non-inferior to full spraying. However, for SumiShield and Actellic, this was true only for the huts with the bottom half + ceiling, reflecting the resting site preference of the local vectors. The results of this study suggest that partial spraying may be a way to reduce the cost of IRS without substantially compromising IRS efficacy., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
19. High vector diversity and malaria transmission dynamics in five sentinel sites in Cameroon.
- Author
-
Fondjo E, Toto JC, Tchouakui M, Eyisap WE, Patchoke S, Menze B, Njeambosay B, Zeukeug F, Ngomdjum RT, Mandeng E, Elanga-Ndille E, Kopya E, Binyang JA, Ndo C, Tene-Fossog B, Tedjou A, Nchoutpouen E, Tchouine F, Achu D, Ambrose K, Hedje J, Kouambeng C, Carlson J, Zohdy S, and Chabi J
- Subjects
- Animals, Female, Humans, Cameroon epidemiology, Mosquito Vectors, Sporozoites, Malaria prevention & control, Anopheles, Pyrethrins
- Abstract
Background: Malaria remains one of the main causes of morbidity and mortality in Cameroon. To inform vector control intervention decision making, malaria vector surveillance was conducted monthly from October 2018 to September 2020 in five selected sentinel sites (Gounougou and Simatou in the North, and Bonabéri, Mangoum and Nyabessang in the South)., Methods: Human landing catches (HLCs), U.S. Centers for Disease Control and Prevention (CDC) light traps, and pyrethrum spray catches (PSCs) were used to assess vector density, species composition, human biting rate (HBR), endophagic index, indoor resting density (IRD), parity, sporozoite infection rates, entomological inoculation rate (EIR), and Anopheles vectorial capacity., Results: A total of 139,322 Anopheles mosquitoes from 18 species (or 21 including identified sub-species) were collected across all sites. Out of the 18 species, 12 were malaria vectors including Anopheles gambiae sensu lato (s.l.), Anopheles funestus s.l.., Anopheles nili, Anopheles moucheti, Anopheles paludis, Anopheles demeilloni, Anopheles. pharoensis, Anopheles ziemanni, Anopheles multicinctus, Anopheles tenebrosus, Anopheles rufipes, and Anopheles marshallii. Anopheles gambiae s.l. remains the major malaria vector (71% of the total Anopheles) collected, though An. moucheti and An. paludis had the highest sporozoite rates in Nyabessang. The mean indoor HBR of Anopheles ranged from 11.0 bites/human/night (b/h/n) in Bonabéri to 104.0 b/h/n in Simatou, while outdoors, it varied from 24.2 b/h/n in Mangoum to 98.7 b/h/n in Simatou. Anopheles gambiae s.l. and An. moucheti were actively biting until at least 8:00 a.m. The mean Anopheles IRD was 17.1 females/room, and the parity rate was 68.9%. The mean EIRs for each site were 55.4 infective bites/human/month (ib/h/m) in Gounougou, 99.0 ib/h/m in Simatou, 51.2 ib/h/m in Mangoum, 24.4 ib/h/m in Nyabessang, and 18.1 ib/h/m in Bonabéri. Anopheles gambiae s.l. was confirmed as the main malaria vector with the highest vectorial capacity in all sites based on sporozoite rate, except in Nyabessang., Conclusion: These findings highlight the high malaria transmission occurring in Cameroon and will support the National Malaria Control Program to design evidence-based malaria vector control strategies, and deployment of effective and integrated vector control interventions to reduce malaria transmission and burden in Cameroon, where several Anopheles species could potentially maintain year-round transmission., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
20. Correction: Entomological monitoring data driving decision-making for appropriate and sustainable malaria vector control in Côte d'Ivoire.
- Author
-
Kouassi BL, Edi C, Ouattara AF, Ekra AK, Bellai LG, Gouaméné J, Kacou YAK, Kouamé JKI, Béké AHO, Yokoli FN, Gbalegba CGN, Tia E, Yapo RM, Konan LY, N'Tamon RN, Akré MA, Koffi AA, Tanoh AM, Zinzindohoué P, Kouadio B, Zembrou PLY, Belemvire A, Irish SR, Cissé NG, Flatley C, and Chabi J
- Published
- 2023
- Full Text
- View/download PDF
21. Genome-wide association studies reveal novel loci associated with pyrethroid and organophosphate resistance in Anopheles gambiae s.l.
- Author
-
Lucas ER, Nagi SC, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Djogbénou LS, Medjigbodo AA, Edi CV, Ketoh GK, Koudou BG, Van't Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Cerdeira LT, Clarkson CS, Kwiatkowski DP, Miles A, Donnelly MJ, and Weetman D
- Abstract
Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of the most widespread tools currently used to control malaria. The genetic underpinnings of resistance are still only partially understood, with much of the variance in resistance phenotype left unexplained. We performed a multi-country large scale genome-wide association study of resistance to two insecticides widely used in malaria control: deltamethrin and pirimiphos-methyl. Using a bioassay methodology designed to maximise the phenotypic difference between resistant and susceptible samples, we sequenced 969 phenotyped female An. gambiae and An. coluzzii from ten locations across four countries in West Africa (Benin, Côte d'Ivoire, Ghana and Togo), identifying single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) segregating in the populations. The patterns of resistance association were highly multiallelic and variable between populations, with different genomic regions contributing to resistance, as well as different mutations within a given region. While the strongest and most consistent association with deltamethrin resistance came from the region around Cyp6aa1 , this resistance was based on a combination of several independent CNVs in An. coluzzii , and on a non-CNV bearing haplotype in An. gambiae . Further signals involved a range of cytochrome P450, mitochondrial, and immunity genes. Similarly, for pirimiphos-methyl, while the strongest signal came from the region of Ace1 , more widespread signals included cytochrome P450s, glutathione S-transferases, and a subunit of the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes were associated with resistance to both insecticide classes, suggesting possible cross-resistance mechanisms. These locally-varying, multigenic and multiallelic patterns highlight the challenges involved in genomic monitoring and surveillance of resistance, and form the basis for improvement of methods used to detect and predict resistance. Based on simulations of resistance variants, we recommend that yet larger scale studies, exceeding 500 phenotyped samples per population, are required to better identify associated genomic regions.
- Published
- 2023
- Full Text
- View/download PDF
22. Entomological monitoring data driving decision-making for appropriate and sustainable malaria vector control in Côte d'Ivoire.
- Author
-
Kouassi BL, Edi C, Ouattara AF, Ekra AK, Bellai LG, Gouaméné J, Kacou YAK, Kouamé JKI, Béké AO, Yokoli FN, Gbalegba CGN, Tia E, Yapo RM, Konan LY, N'Tamon RN, Akré MA, Koffi AA, Tanoh AM, Zinzindohoué P, Kouadio B, Yepassis-Zembrou PL, Belemvire A, Irish SR, Cissé NG, Flatley C, and Chabi J
- Subjects
- Humans, Animals, Mosquito Control methods, Cote d'Ivoire epidemiology, Mosquito Vectors, Insecticide Resistance, Insecticides pharmacology, Malaria epidemiology, Anopheles
- Abstract
Background: Entomological surveillance provides critical information on vectors for appropriate malaria vector control and strategic decision-making. The widely documented insecticide resistance of malaria vectors in Côte d'Ivoire requires that any vector control intervention deployment be driven by entomological data to optimize its effectiveness and appropriate resource allocations. To achieve this goal, this study documents the results of monthly vector surveillance and insecticide susceptibility tests conducted in 2019 and a review of all previous entomological monitoring data used to guide vector control decision making. Furthermore, susceptibility to pirimiphos-methyl and clothianidin was assessed in addition to chlorfenapyr and pyrethroids (intensity and piperonyl butoxide (PBO) synergism) tests previously reported. Vector bionomic data were conducted monthly in four sites (Sakassou, Béoumi, Dabakala and Nassian) that were selected based on their reported high malaria incidence. Adult mosquitoes were collected using human landing catches (HLCs), pyrethrum spray catches (PSCs), and human-baited CDC light traps to assess vector density, behaviour, species composition and sporozoite infectivity., Results: Pirimiphos-methyl and clothianidin susceptibility was observed in 8 and 10 sites, respectively, while previous data reported chlorfenapyr (200 µg/bottle) susceptibility in 13 of the sites, high pyrethroid resistance intensity and increased mortality with PBO pre-exposure at all 17 tested sites. Anopheles gambiae sensu lato was the predominant malaria vector collected in all four bionomic sites. Vector density was relatively higher in Sakassou throughout the year with mean biting rates of 278.2 bites per person per night (b/p/n) compared to Béoumi, Dabakala and Nassian (mean of 48.5, 81.4 and 26.6 b/p/n, respectively). The mean entomological inoculation rate (EIR) was 4.44 infective bites per person per night (ib/p/n) in Sakassou, 0.34 ib/p/n in Beoumi, 1.17 ib/p/n in Dabakala and 1.02 ib/p/n in Nassian. The highest EIRs were recorded in October in Béoumi (1.71 ib/p/n) and Nassian (3.22 ib/p/n), in July in Dabakala (4.46 ib/p/n) and in May in Sakassou (15.6 ib/p/n)., Conclusion: Based on all results and data review, the National Malaria Control Programme developed and implemented a stratified insecticide-treated net (ITN) mass distribution in 2021 considering new generation ITNs. These results also supported the selection of clothianidin-based products and an optimal spraying time for the first indoor residual spraying (IRS) campaign in Sakassou and Nassian in 2020., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
23. Education and Socio-economic status are key factors influencing use of insecticides and malaria knowledge in rural farmers in Southern Côte d'Ivoire.
- Author
-
Kouamé RMA, Guglielmo F, Abo K, Ouattara AF, Chabi J, Sedda L, Donnelly MJ, and Edi C
- Subjects
- Animals, Humans, Cote d'Ivoire epidemiology, Farmers, Economic Status, Mosquito Vectors, Educational Status, Mosquito Control methods, Social Class, Insecticide Resistance, Insecticides pharmacology, Malaria epidemiology, Malaria prevention & control, Anopheles
- Abstract
Background: Insecticides play a key role in rural farming; however, their over- or misuse has been linked with a negative impact on malaria vector control policies. This study was conducted amongst agricultural communities in Southern Côte d'Ivoire to identify which insecticides are used by local farmers and how it relates to the perception of farmers on malaria. Understanding the use of insecticides may help in designing awareness programme on mosquito control and pesticides management., Methods: A questionnaire was administered to 1399 farming households across ten villages. Farmers were interviewed on their education, farming practices (e.g. crops cultivated, insecticides use), perception of malaria, and the different domestic strategies of mosquito control they use. Based on some pre-defined household assets, the socioeconomic status (SES) of each household was estimated. Statistical associations were calculated between different variables, showing significant risk factors., Results: The educational level of farmers was significantly associated with their SES (p < 0.0001). Most of the householders (88.82%) identified mosquitoes as the principal cause of malaria, with good knowledge of malaria resulting as positively related to high educational level (OR = 2.04; 95%CI: 1.35, 3.10). The use of indoor chemical compounds was strongly associated to the SES of the households, their education level, their use of ITNs and insecticide in agricultural (p < 0.0001). Indoor application of pyrethroid insecticides was found to be widespread among farmers as well as the use of such insecticide for crops protection., Conclusion: Our study shows that the education level remains the key factor influencing the use of insecticides by farmers and their awareness of malaria control. We suggest that better communication tailored to education level and including SES, controlled availability and access to chemical products, should be considered when designing campaigns on use of pesticides and vector borne disease control for local communities., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
24. Countrywide insecticide resistance monitoring and first report of the presence of the L1014S knock down resistance in Niger, West Africa.
- Author
-
Soumaila H, Hamani B, Arzika II, Soumana A, Daouda A, Daouda FA, Iro SM, Gouro S, Zaman-Allah MS, Mahamadou I, Kadri S, Salé NM, Hounkanrin W, Mahamadou B, Zamaka HN, Labbo R, Laminou IM, Jackou H, Idrissa S, Coulibaly E, Bahari-Tohon Z, Mathieu E, Carlson J, Dotson E, Awolola TS, Flatley C, and Chabi J
- Subjects
- Animals, Insecticide Resistance genetics, Permethrin pharmacology, Acetylcholinesterase, Niger, Mosquito Vectors genetics, Africa, Western, Anopheles genetics, Malaria prevention & control, Pyrethrins pharmacology, Insecticides pharmacology
- Abstract
Background: Mass distribution of insecticide-treated nets (ITNs) is the principal malaria vector control strategy adopted by Niger. To better inform on the most appropriate ITN to distribute, the National Malaria Control Programme (NMCP) of Niger and its partners, conducted insecticide resistance monitoring in selected sites across the country., Methods: The susceptibility of Anopheles gambiae sensu lato (s.l.) to chlorfenapyr and pyrethroid insecticides was investigated in a total of sixteen sites in 2019 and 2020, using 2-5-day-old adults reared from wild collected larvae per site. The susceptibility status, pyrethroid resistance intensity at 5 and 10 times the diagnostic concentrations, and piperonyl butoxide (PBO) synergism with diagnostic concentrations of deltamethrin, permethrin and alpha-cypermethrin were assessed using WHO bioassays. Two doses (100 and 200 µg/bottle) of chlorfenapyr were tested using the CDC bottle assay method. Species composition and allele frequencies for knock-down resistance (kdr-L1014F and L1014S) and acetylcholinesterase (ace-1 G119S) mutations were further characterized using polymerase chain reaction (PCR)., Results: High resistance intensity to all pyrethroids tested was observed in all sites except for alpha-cypermethrin in Gaya and Tessaoua and permethrin in Gaya in 2019 recording moderate resistance intensity. Similarly, Balleyara, Keita and Tillabery yielded moderate resistance intensity for alpha-cypermethrin and deltamethrin, and Niamey V low resistance intensity against deltamethrin and permethrin in 2020. Pre-exposure to PBO substantially increased susceptibility with average increases in mortality between 0 and 70% for tested pyrethroids. Susceptibility to chlorfenapyr (100 µg/bottle) was recorded in all sites except in Tessaoua and Magaria where susceptibility was recorded at the dose of 200 µg/bottle. Anopheles coluzzii was the predominant malaria vector species in most of the sites followed by An. gambiae sensu stricto (s.s.) and Anopheles arabiensis. The kdr-L1014S allele, investigated for the first time, was detected in the country. Both kdr-L1014F (frequencies [0.46-0.81]) and L1014S (frequencies [0.41-0.87]) were present in all sites while the ace-1 G119S was between 0.08 and 0.20., Conclusion: The data collected will guide the NMCP in making evidence-based decisions to better adapt vector control strategies and insecticide resistance management in Niger, starting with mass distribution of new generation ITNs such as interceptor G2 and PBO ITNs., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
25. Resistance intensity status of Anopheles gambiae s.l. species at KOLOKOPE, eastern plateau Togo: A potential site to assess new vector control tools.
- Author
-
Ahadji-Dabla KM, Chabi J, Apetogbo YG, Koffi E, Hadi MP, and Ketoh GK
- Abstract
According to WHO recommendations, the deployment of the next generation of Long-Lasting Insecticidal Nets (LLINs) for malaria vector control requires appropriate investigations on the insecticide resistance profile of the vector. Most of the next generation of LLINs are impregnated with a combination of pyrethroid insecticides and piperonyl butoxide (PBO), a synergist with an additional impact on the increase in the mortality rate of Anopheles gambiae s.l. (Diptera: Culicidae). Kolokopé is a cotton-growing area in the central region of Togo characterized by an intensive use of agricultural pesticides and insecticides where there is a phase II experimental hut station. For the characterization of the site, WHO susceptibility tests using diagnostic doses of ten insecticides, PBO synergist assays and intensity assays of three pyrethroids (5x and 10x) were conducted on adult female mosquitoes obtained from larvae collected around the site. Anopheles gambiae s.l. from Kolokopé showed high resistance to pyrethroids and DDT, but to a lesser extent to carbamates and organophosphates. Likewise, high intensity of resistance to pyrethroid was observed with less than 40% mortality at 10x deltamethrin, 52 and 29% mortality at 10x permethrin and 10x alphacypermethrin, respectively. Also, PBO treatment resulted in increased mortality which was higher than the mortality rate at 10x doses of pyrethroids. The high pyrethroid intensity resistance recorded at Kolokopé could be mainly due to the selection pressure on An. gambiae s.l. caused by the excessive use of insecticide in agriculture. These results can be used to assess the next generation of LLINs either in experimental hut or at a community trial., Competing Interests: The authors declare no conflict of interest., (© 2022 The Authors.)
- Published
- 2022
- Full Text
- View/download PDF
26. Microsporidia MB is found predominantly associated with Anopheles gambiae s.s and Anopheles coluzzii in Ghana.
- Author
-
Akorli J, Akorli EA, Tetteh SNA, Amlalo GK, Opoku M, Pwalia R, Adimazoya M, Atibilla D, Pi-Bansa S, Chabi J, and Dadzie SK
- Subjects
- Animals, Anopheles genetics, Anopheles metabolism, Disease Vectors, Ghana epidemiology, Malaria transmission, Microsporidia metabolism, Microsporidiosis metabolism, Mosquito Vectors genetics, Anopheles microbiology, Microsporidia genetics, Microsporidiosis etiology
- Abstract
A vertically transmitted microsporidian, Microsporidia MB, with the ability to disrupt Plasmodium development was reported in Anopheles arabiensis from Kenya, East Africa. To demonstrate its range of incidence, archived DNA samples from 7575 Anopheles mosquitoes collected from Ghana were screened. MB prevalence was observed at 1.8%. An. gambiae s.s constituted 87% of positive mosquitoes while the remaining were from An. coluzzii. Both sibling species had similar positivity rates (24% and 19%; p = 0.42) despite the significantly higher number of An. gambiae s.s analysed (An. gambiae s.s = 487; An. coluzzii = 94; p = 0.0005). The microsporidian was also more prevalent in emerged adults from field-collected larvae than field-caught adults (p < 0.0001) suggestive of an efficient vertical transmission and/or horizontal transfer among larvae. This is the first report of Microsporidia MB in Anopheles mosquitoes in West Africa. It indicates possible widespread among malaria vector species and warrants investigations into the symbiont's diversity across sub-Saharan Africa., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
27. Determination of the discriminating concentration of chlorfenapyr (pyrrole) and Anopheles gambiae sensu lato susceptibility testing in preparation for distribution of Interceptor® G2 insecticide-treated nets.
- Author
-
Oxborough RM, Seyoum A, Yihdego Y, Chabi J, Wat'senga F, Agossa FR, Coleman S, Musa SL, Faye O, Okia M, Bayoh M, Alyko E, Rakotoson JD, Masendu H, Sovi A, Gadiaga L, Abong'o B, Opondo K, Baber I, Dabire R, Gnanguenon V, Yohannes G, Varela K, Fondjo E, Carlson J, Armistead JS, and Dengela D
- Subjects
- Animals, Dose-Response Relationship, Drug, Anopheles drug effects, Insecticide Resistance, Insecticide-Treated Bednets, Insecticides pharmacology, Pyrethrins pharmacology
- Abstract
Background: Following agricultural use and large-scale distribution of insecticide-treated nets (ITNs), malaria vector resistance to pyrethroids is widespread in sub-Saharan Africa. Interceptor® G2 is a new dual active ingredient (AI) ITN treated with alpha-cypermethrin and chlorfenapyr for the control of pyrethroid-resistant malaria vectors. In anticipation of these new nets being more widely distributed, testing was conducted to develop a chlorfenapyr susceptibility bioassay protocol and gather susceptibility information., Methods: Bottle bioassay tests were conducted using five concentrations of chlorfenapyr at 12.5, 25, 50, 100, and 200 µg AI/bottle in 10 countries in sub-Saharan Africa using 13,639 wild-collected Anopheles gambiae sensu lato (s.l.) (56 vector populations per dose) and 4,494 pyrethroid-susceptible insectary mosquitoes from 8 colonized strains. In parallel, susceptibility tests were conducted using a provisional discriminating concentration of 100 µg AI/bottle in 16 countries using 23,422 wild-collected, pyrethroid-resistant An. gambiae s.l. (259 vector populations). Exposure time was 60 min, with mortality recorded at 24, 48 and 72 h after exposure., Results: Median mortality rates (up to 72 h after exposure) of insectary colony mosquitoes was 100% at all five concentrations tested, but the lowest dose to kill all mosquitoes tested was 50 µg AI/bottle. The median 72-h mortality of wild An. gambiae s.l. in 10 countries was 71.5, 90.5, 96.5, 100, and 100% at concentrations of 12.5, 25, 50, 100, and 200 µg AI/bottle, respectively. Log-probit analysis of the five concentrations tested determined that the LC
95 of wild An. gambiae s.l. was 67.9 µg AI/bottle (95% CI: 48.8-119.5). The discriminating concentration of 203.8 µg AI/bottle (95% CI: 146-359) was calculated by multiplying the LC95 by three. However, the difference in mortality between 100 and 200 µg AI/bottle was minimal and large-scale testing using 100 µg AI/bottle with wild An. gambiae s.l. in 16 countries showed that this concentration was generally suitable, with a median mortality rate of 100% at 72 h., Conclusions: This study determined that 100 or 200 µg AI/bottle chlorfenapyr in bottle bioassays are suitable discriminating concentrations for monitoring susceptibility of wild An. gambiae s.l., using mortality recorded up to 72 h. Testing in 16 countries in sub-Saharan Africa demonstrated vector susceptibility to chlorfenapyr, including mosquitoes with multiple resistance mechanisms to pyrethroids., (© 2021. The Author(s).)- Published
- 2021
- Full Text
- View/download PDF
28. Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus.
- Author
-
Grau-Bové X, Lucas E, Pipini D, Rippon E, van 't Hof AE, Constant E, Dadzie S, Egyir-Yawson A, Essandoh J, Chabi J, Djogbénou L, Harding NJ, Miles A, Kwiatkowski D, Donnelly MJ, and Weetman D
- Subjects
- Africa, Western, Animals, Anopheles drug effects, Anopheles genetics, Anopheles parasitology, DNA Copy Number Variations genetics, Genes, Duplicate genetics, Genetic Introgression genetics, Humans, Insecticides adverse effects, Malaria parasitology, Malaria prevention & control, Mosquito Vectors genetics, Organothiophosphorus Compounds adverse effects, Organothiophosphorus Compounds pharmacology, Acetylcholinesterase genetics, Insecticide Resistance genetics, Malaria genetics, Malaria transmission
- Abstract
Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Côte d'Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
29. Susceptibility of Anopheles gambiae from Côte d'Ivoire to insecticides used on insecticide-treated nets: evaluating the additional entomological impact of piperonyl butoxide and chlorfenapyr.
- Author
-
Kouassi BL, Edi C, Tia E, Konan LY, Akré MA, Koffi AA, Ouattara AF, Tanoh AM, Zinzindohoue P, Kouadio B, Andre M, Irish SR, Armistead J, Dengela D, Cissé NG, Flatley C, and Chabi J
- Subjects
- Animals, Cote d'Ivoire, Drug Synergism, Female, Insecticide-Treated Bednets, Mosquito Control, Mosquito Vectors drug effects, Pesticide Synergists pharmacology, Anopheles drug effects, Insecticide Resistance drug effects, Insecticides pharmacology, Piperonyl Butoxide pharmacology, Pyrethrins pharmacology
- Abstract
Background: Pyrethroid-treated mosquito nets are currently the mainstay of vector control in Côte d'Ivoire. However, resistance to pyrethroids has been reported across the country, limiting options for insecticide resistance management due to the paucity of alternative insecticides. Two types of insecticide-treated nets (ITNs), ITNs with pyrethroids and the synergist piperonyl butoxide (PBO), and Interceptor®G2 nets, a net treated with a combination of chlorfenapyr and alpha-cypermethrin, are believed to help in the control of pyrethroid-resistant mosquitoes., Methods: The susceptibility of Anopheles gambiae sensu lato (s.l.) to pyrethroid insecticides with and without pre-exposure to PBO as well as to chlorfenapyr was investigated in fifteen sites across the country. Susceptibility tests were conducted on 2- to 4-day old adult female An. gambiae s.l. reared from larval collections. The resistance status, intensity, and effects of PBO on mortality after exposure to different concentrations of deltamethrin, permethrin and alpha-cypermethrin were determined using WHO susceptibility test kits. In the absence of a WHO-recommended standard protocol for chlorfenapyr, two interim doses (100 and 200 µg/bottle) were used to test the susceptibility of mosquitoes using the CDC bottle assay method., Results: Pre-exposure to PBO did not result in full restoration of susceptibility to any of the three pyrethroids for the An. gambiae s.l. populations from any of the sites surveyed. However, PBO pre-exposure did increase mortality for all three pyrethroids, particularly deltamethrin (from 4.4 to 48.9%). Anopheles gambiae s.l. from only one site (Bettie) were susceptible to chlorfenapyr at the dose of 100 µg active ingredient (a.i.)/bottle. At the dose of 200 µg (a.i.)/bottle, susceptibility was only recorded in 10 of the 15 sites., Conclusion: Low mosquito mortality was found for pyrethroids alone, and while PBO increased mortality, it did not restore full susceptibility. The vector was not fully susceptible to chlorfenapyr in one third of the sites tested. However, vector susceptibility to chlorfenapyr seems to be considerably higher than for pyrethroids alone or with PBO. These data should be used cautiously when making ITN procurement decisions, noting that bioassays are conducted in controlled conditions and may not fully represent field efficacy where the host-seeking behaviours, which include free-flying activity are known to enhance pro-insecticide chlorfenapyr intoxication to mosquitoes.
- Published
- 2020
- Full Text
- View/download PDF
30. Biting Behavior and Molecular Identification of Aedes aegypti (Diptera: Culicidae) Subspecies in Some Selected Recent Yellow Fever Outbreak Communities in Northern Ghana.
- Author
-
Captain-Esoah M, Kweku Baidoo P, Frempong KK, Adabie-Gomez D, Chabi J, Obuobi D, Kwame Amlalo G, Balungnaa Veriegh F, Donkor M, Asoala V, Behene E, Adjei Boakye D, and Dadzie SK
- Subjects
- Aedes anatomy & histology, Aedes genetics, Animal Distribution, Animals, Ghana, Insect Bites and Stings, Insect Proteins analysis, Mosquito Vectors anatomy & histology, Mosquito Vectors genetics, Yellow Fever transmission, Aedes physiology, Mosquito Vectors physiology
- Abstract
Aedes aegypti (L.) (Diptera: Culicidae) is a diurnal feeder that lives in close association with human populations. It is the principal vector of yellow fever, dengue fever and the Zika Virus. Issues of arboviral diseases have been on the ascendency in most countries including Ghana where Aedes mosquito is the main vector of yellow fever. A comparative study of the biting behavior of Ae. aegypti and the identification of subspecies were undertaken using molecular technique. Standard human landing technique was used to collect both indoor and outdoor biting mosquitoes at three zones located in the Upper East (Bolgatanga), Upper West (Nadowli), and Northern (Damongo) Regions of Ghana during the dry and rainy seasons between 0600 and 1800 Greenwich Mean Time (GMT). All collected mosquitoes were identified morphologically using taxonomic keys. random amplified polymorphic DNA polymerase chain reaction was used to categorize Ae. aegypti into subspecies. Adult female Aedes mosquitoes identified formed 62% (n = 1,206) of all female mosquitoes collected. Aedes aegypti 98% and Aedes vittatus 2% were the only Aedes species identified. Bolgatanga recorded the largest number of Ae. aegypti 42%, whereas Nadowli 22% recorded the least. Aedes vittatus was observed in Nadowli. Aedes aegypti exhibited a bimodal biting behavior peaking at 0600-0800 GMT and 1500-1600 h GMT. Molecular findings revealed 69% Ae. aegypti aegypti and 31% Ae. aegypti formosus as the two subspecies (n = 110). This information is important for implementing effective vector control programs in the three regions of the northern Ghana., (© The Author(s) 2020. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
31. High Levels of Knockdown Resistance in Anopheles coluzzii and Anopheles gambiae (Diptera: Culicidae), Major Malaria Vectors in Togo, West Africa: A 2011 Monitoring Report.
- Author
-
Ahadji-Dabla KM, Amoudji AD, Nyamador SW, Apétogbo GY, Chabi J, Glitho IA, and Ketoh GK
- Subjects
- Animals, Female, Malaria transmission, Mutation, Togo, Anopheles, Insecticide Resistance, Mosquito Vectors
- Abstract
A survey of susceptibility to DDT, deltamethrin, bendiocarb, and chlorpyrifos-methyl was conducted in five localities in 2011 in Togo, West Africa, to assess the insecticide resistance status of Anopheles gambiae s.l. (Diptera: Culicidae). Female populations of An. gambaie s.l. emerged from collected larvae (F0) were exposed to insecticide-impregnated papers using World Health Organization test kits for adult mosquitoes; the susceptible reference strain Kisumu was used as a control. Resistance to DDT and deltamethrin was observed within the mosquito populations tested. Anopheles gambiae s.s. and Anopheles coluzzii represented the only species recorded in the study sites. The frequency of knockdown resistance (kdr L1014F) mutation determined using polymerase chain reaction diagnostic tests was lower in An. gambiae than in An. coluzzii in all of the localities except Kolokopé. Further investigations of An. gambiae s.l. resistance are needed in Togo to help the National Malaria Control Programme in vector control decision making and implementation of resistance management strategy., (© The Author(s) 2019. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2019
- Full Text
- View/download PDF
32. High insecticide resistance intensity of Anopheles gambiae (s.l.) and low efficacy of pyrethroid LLINs in Accra, Ghana.
- Author
-
Pwalia R, Joannides J, Iddrisu A, Addae C, Acquah-Baidoo D, Obuobi D, Amlalo G, Akporh S, Gbagba S, Dadzie SK, Athinya DK, Hadi MP, Jamet HP, and Chabi J
- Subjects
- Agriculture, Animals, Biological Assay, Female, Ghana epidemiology, Larva, Malaria epidemiology, Mosquito Control methods, Mosquito Control standards, World Health Organization, Anopheles, Insecticide Resistance, Insecticide-Treated Bednets standards, Malaria prevention & control, Pyrethrins
- Abstract
Background: Insecticide resistance of Anopheles gambiae (s.l.) against public health insecticides is increasingly reported in Ghana and need to be closely monitored. This study investigated the intensity of insecticide resistance of An. gambiae (s.l.) found in a vegetable growing area in Accra, Ghana, where insecticides, herbicides and fertilizers are massively used for plant protection. The bioefficacy of long-lasting insecticidal nets (LLINs) currently distributed in the country was also assessed to delimitate the impact of the insecticide resistance intensity on the effectiveness of those nets., Methods: Three- to five-day-old adult mosquitoes that emerged from collected larvae from Opeibea, Accra (Ghana), were assayed using CDC bottle and WHO tube intensity assays against different insecticides. The Vgsc-L1014F and ace-1 mutations within the population were also characterized using PCR methods. Furthermore, cone bioassays against different types of LLINs were conducted to evaluate the extent and impact of the resistance of An. gambiae (s.l.) from Opeibea., Results: Anopheles gambiae (s.l.) from Opeibea were resistant to all the insecticides tested with very low mortality observed against organochlorine, carbamates and pyrethroid insecticides using WHO susceptibility tests at diagnostic doses during three consecutive years of monitoring. The average frequencies of Vgsc-1014F and ace-1 in the An. gambiae (s.l.) population tested were 0.99 and 0.76, respectively. The intensity assays using both CDC bottle and WHO tubes showed high resistance intensity to pyrethroids and carbamates with survivals at 10× the diagnostic doses of the insecticides tested. Only pirimiphos methyl recorded a low resistance intensity with 100% mortality at 5× the diagnostic dose. The bioefficacy of pyrethroid LLINs ranged from 2.2 to 16.2% mortality while the PBO LLIN, PermaNet
® 3.0, was 73%., Conclusions: WHO susceptibility tests using the diagnostic doses described the susceptibility status of the mosquito colony while CDC bottle and WHO tube intensity assays showed varying degrees of resistance intensity. Although both methods are not directly comparable, the indication of the resistance intensity showed the alarming insecticide resistance intensity in Opeibea and its surroundings, which could have an operational impact on the efficacy of vector control tools and particularly on pyrethroid LLINs.- Published
- 2019
- Full Text
- View/download PDF
33. Rapid high throughput SYBR green assay for identifying the malaria vectors Anopheles arabiensis, Anopheles coluzzii and Anopheles gambiae s.s. Giles.
- Author
-
Chabi J, Van't Hof A, N'dri LK, Datsomor A, Okyere D, Njoroge H, Pipini D, Hadi MP, de Souza DK, Suzuki T, Dadzie SK, and Jamet HP
- Subjects
- Animals, Anopheles classification, Anopheles parasitology, Benzothiazoles, DNA chemistry, DNA genetics, Diamines, Fluorescent Dyes chemistry, Ghana, Kenya, Malaria diagnosis, Malaria parasitology, Mosquito Vectors parasitology, Organic Chemicals chemistry, Quinolines, Reproducibility of Results, Sensitivity and Specificity, Species Specificity, Anopheles genetics, Malaria genetics, Molecular Diagnostic Techniques methods, Mosquito Vectors genetics, Polymerase Chain Reaction methods
- Abstract
The Anopheles gambiae sensu lato species complex consists of a number of cryptic species with different habitats and behaviours. These morphologically indistinct species are identified by chromosome banding. Several molecular diagnostic techniques for distinguishing between An. coluzzii and An. gambiae are still under improvement. Although, the current SINE method for identification between An. coluzzii and An. gambiae works reliably, this study describes a refinement of the SINE method to increase sensitivity for identification of An. coluzzii, An. gambiae and An. arabiensis based on amplicon dissociation curve characteristics. Field-collected samples, laboratory-reared colonies and crossed specimens of the two species were used for the design of the protocol. An. gambiae, An. coluzzii, and hybrids of the two species were sampled from Ghana and An. arabiensis from Kenya. Samples were first characterised using conventional SINE PCR method, and further assayed using SYBR green, an intercalating fluorescent dye. The three species and hybrids were clearly differentiated using the melting temperature of the dissociation curves, with derivative peaks at 72°C for An. arabiensis, 75°C for An. gambiae and 86°C for An. coluzzii. The hybrids (An. gambiae / An. coluzzii) showed both peaks. This work is the first to describe a SYBR green real time PCR method for the characterization of An. arabiensis, An. gambiae and An. coluzzii and was purposely designed for basic melt-curve analysis (rather than high-resolution melt-curve) to allow it to be used on a wide range of real-time PCR machines., Competing Interests: Joseph Chabi, Louis Kouadio N’Dri, Alex Datsomor and Dora Okyere were employed by Noguchi Memorial Institute for Medical Research (NMIMR) within Vestergaard-NMIMR project. Helen Pates Jamet and Melinda Hadi were employed by Vestergaard. This commercial affiliation of some authors does not alter our adherence to PLOS ONE policies on sharing data and materials.
- Published
- 2019
- Full Text
- View/download PDF
34. Efficacy of two PBO long lasting insecticidal nets against natural populations of Anopheles gambiae s.l. in experimental huts, Kolokopé, Togo.
- Author
-
Ketoh GK, Ahadji-Dabla KM, Chabi J, Amoudji AD, Apetogbo GY, Awokou F, and Glitho IA
- Subjects
- Animals, Anopheles genetics, Anopheles metabolism, Genes, Insect, Humans, Insecticide Resistance genetics, Malaria transmission, Mosquito Control methods, Mosquito Vectors drug effects, Mosquito Vectors genetics, Mosquito Vectors metabolism, Togo, Anopheles drug effects, Insecticide-Treated Bednets statistics & numerical data, Insecticides pharmacology, Malaria prevention & control, Piperonyl Butoxide pharmacology, Pyrethrins pharmacology
- Abstract
LLINs containing an insecticide plus the synergist, piperonyl butoxide (PBO) have been designed for increased efficacy against pyrethroid-resistant malaria vectors. In this study, two LLINs with PBO, PermaNet® 3.0 and Olyset® Plus, and a pyrethroid-only LLIN, Yorkool®, were evaluated in experimental huts against a free-flying, wild population of Anopheles gambiae s.l. in Kolokopé, a cotton cultivated area of Togo. WHO susceptibility tube tests and subsequent molecular assays determine the An. gambiae s.l. populations to be resistant to pyrethroids and DDT with both target site kdr and metabolic resistance mechanisms involved in the resistance observed. Anopheles gambiae s.s. and An. coluzzi were present in sympatry though the kdr (L1014F) mutation was observed at a higher frequency in An. gambiae s.s. The experimental hut results showed that both PermaNet® 3.0 and Olyset® Plus nets induced similar levels of deterrence, exophily, and reduced blood feeding rate against wild An. gambiae s.l. in contrast to the pyrethroid only LLIN, Yorkool®. The proportion of wild An. gambiae s.l. killed by unwashed PermaNet® 3.0 was significantly higher than unwashed Olyset® Plus (corrected mortality 80.5% compared to 66.6%). Similar blood feeding inhibition rates were observed for unwashed PermaNet® 3.0 and Olyset® Plus; however, PermaNet® 3.0 washed 20 times demonstrated significantly higher blood feeding inhibition rate than Olyset® Plus washed 20 times (91.1% compared with 85.6% respectively). Yorkool® performed the worst for all the parameters evaluated. In an area of pyrethroid resistance of An. gambiae s.l involving kdr target site and metabolic resistance mechanisms, LLINs with PBO can provide additional protection in terms of reduction in blood feeding and increase in mosquito mortality compared to a pyrethroid-only net, and should be considered in malaria vector control strategies., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2018
- Full Text
- View/download PDF
35. The Role of Detoxification Enzymes in the Adaptation of the Major Malaria Vector Anopheles gambiae (Giles; Diptera: Culicidae) to Polluted Water.
- Author
-
King SA, Onayifeke B, Akorli J, Sibomana I, Chabi J, Manful-Gwira T, Dadzie S, Suzuki T, Wilson MD, Boakye DA, and de Souza DK
- Subjects
- Animals, Anopheles genetics, Female, Gene Expression, Inactivation, Metabolic, Malaria transmission, Mosquito Vectors genetics, Water Quality, Adaptation, Biological, Anopheles enzymology, Mosquito Vectors enzymology, Water Pollution
- Abstract
The main malaria vectors in sub-Saharan Africa, the Anopheles gambiae (Giles; Diptera: Culicidae), normally breed in clean water sources. However, evidence suggests an on-going adaptation of Anopheline species to polluted breeding habitats in urban settings. This study aimed at understanding the adaptation to breeding in water bodies with different qualities, in five selected mosquito breeding sites in urban Accra, Ghana. The study sites were also evaluated for the WHO water-quality parameters as a measure of pollution, and insecticide residues. Field mosquitoes were evaluated for five genes; CYP6P3, CYP4H19, CYP4H24, GSTD1-4, and ABCC11-associated with insecticide detoxification-using quantitative RT-PCR, as well as Mono-oxygenase, Alpha Esterase, Glutathione S-transferase, and insensitive acetylcholinesterase (AChE) using biochemical enzyme assays. The lab-reared, insecticide susceptible An. gambiae Kisumu strain was bred in the most polluted water source for 10 generations and evaluated for the same genes and enzymes. The results revealed that the fold expression of the genes was higher in the larvae compared with the adults. The results also suggest that detoxification enzymes could be involved in the adaptation of An. gambiae to polluted breeding sites. Correlation analysis revealed a highly positive significant correlation between calcium levels and all five genes (P < 0.05). Stepwise linear regression to understand which of the variables predicted the expression of the genes revealed that sulphate was responsible for ABCC11 and CYP4H24, alkalinity for GSTD1-4, and calcium for CYP4H19 and CYP6P3. The detailed genetic basis of this adaptation need to be further investigated. A further understanding of this adaptation may provide outlooks for controlling malaria and other disease vectors adapted to polluted breeding water sources., (© The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2017
- Full Text
- View/download PDF
36. Evaluation of piperonyl butoxide in enhancing the efficacy of pyrethroid insecticides against resistant Anopheles gambiae s.l. in Ghana.
- Author
-
Dadzie SK, Chabi J, Asafu-Adjaye A, Owusu-Akrofi O, Baffoe-Wilmot A, Malm K, Bart-Plange C, Coleman S, Appawu MA, and Boakye DA
- Subjects
- Animals, Female, Ghana, Anopheles, Insecticide Resistance, Insecticides, Nitriles, Permethrin, Piperonyl Butoxide, Pyrethrins
- Abstract
Background: Malaria vector control methods involving the use of pyrethroids remain the strategies being used against malaria vectors in Ghana. These methods include the use of long-lasting insecticidal nets and indoor residual spraying in many areas in Ghana. However, there is evidence that pyrethroid resistance is widespread in many areas in Ghana. Synergists have been shown to be useful in inhibiting the enzymes that are responsible for the development of resistance and hence enhance the insecticide susceptibility of Anopheles gambiae sensu lato (s.l.) in many areas. The present study investigated the effect of piperonyl butoxide (PBO) on the susceptibility status of An. gambiae s.l. across some sentinel sites in Ghana., Methods: Three to five day old An. gambiae s.l. reared from larvae were used in WHO susceptibility tube assays. Batches of 20-25 female adult An. gambiae s.l. were exposed simultaneously to the insecticide alone and to the PBO + insecticide. The knock down rate after 60 min and mortality at 24 h were recorded., Results: Deltamethrin and permethrin resistance of An. gambiae s.l. was observed in all the sites in 2015 and 2016. The mortality after 24 h post exposure for deltamethrin ranged from 16.3% in Weija to 82.3% in Kade, whereas that for permethrin ranged from 3.8% in Gomoa Obuasi to 91.3% in Prestea. A significant increase in susceptibility to deltamethrin and less to permethrin was observed during both 2015 and 2016 years in most of the sites when An. gambiae s.l. mosquitoes were pre-exposed to PBO., Conclusion: Findings from this study showed that the use of PBO significantly enhanced the susceptibility of An. gambiae s.l. mosquitoes in most of the sentinel sites. It is recommended that vector control strategies incorporating PBO as a synergist can be effective in killing mosquitoes in the presence of deltamethrin and permethrin resistance.
- Published
- 2017
- Full Text
- View/download PDF
37. Insecticide susceptibility of natural populations of Anopheles coluzzii and Anopheles gambiae (sensu stricto) from Okyereko irrigation site, Ghana, West Africa.
- Author
-
Chabi J, Baidoo PK, Datsomor AK, Okyere D, Ablorde A, Iddrisu A, Wilson MD, Dadzie SK, Jamet HP, and Diclaro JW 2nd
- Subjects
- Agricultural Irrigation, Animals, Biological Assay, DDT pharmacology, Gene Frequency, Genes, Insect, Ghana, Larva drug effects, Polymerase Chain Reaction, Pyrethrins pharmacology, Anopheles drug effects, Insecticide Resistance, Insecticides pharmacology
- Abstract
Background: The increasing spread of insecticide resistance in malaria vectors has been well documented across sub-Saharan Africa countries. The influence of irrigation on increasing vector resistance is poorly understood, and is critical to successful and ethical implementation of food security policies. This study investigated the insecticide resistance status of An. gambiae (s.l.) mosquitoes collected from the irrigated rice area of Okyereko, a village containing about 42 hectares of irrigated field within an irrigation project plan in the Central Region of Ghana. Large amounts of insecticides, herbicides and fertilizers are commonly used in the area to boost the annual production of the rice., Methods: Mosquito larvae were collected and adults were assayed from the F1 progeny. The resistance status, allele and genotype were characterized using WHO susceptibility testing and PCR methods respectively., Results: The An. gambiae (s.l.) populations from Okyereko are highly resistant to DDT and pyrethroid insecticides, with possible involvement of metabolic mechanisms including the elevation of P450 and GST enzyme as well as P-gp activity. The population was mostly composed of An. coluzzii specimens (more than 96 %) with kdr and ace-1 frequencies of 0.9 and 0.2 %, respectively., Conclusion: This study brings additional information on insecticide resistance and the characterization of An. gambiae (s.l.) mosquitoes from Okyereko, which can be helpful in decision making for vector control programmes in the region.
- Published
- 2016
- Full Text
- View/download PDF
38. Ovipositional Behavior of Anopheles gambiae Mosquitoes.
- Author
-
Agyapong J, Chabi J, Ablorde A, Kartey WD, Osei JH, de Souza DK, Dadzie S, Boakye DA, Ohta N, Hadi MP, and Suzuki T
- Abstract
Mosquito eggs laid within two hours are necessary for transgenic (injection) studies, because mosquito eggs become hard after that period. Thus, in order to have eggs available within this two-hour window, it is important to understand the ovipositional behavior of Anopheles gambiae s.s.. In the present study, the ovipositional behavior of An. gambiae s.s. (Kisumu) was investigated in several different conditions: age of mosquitoes, time post blood meal to access oviposition substrate, and light conditions. Two groups of mosquitoes, 3-5 days old and 9-11 days old were blood-fed. For those mosquito groups, an oviposition dish was set either at 48 hours or 72 hours after the blood meal either in a light condition or in an artificial dark condition. The number of laid eggs was compared among the different conditions. The 3-5 day-old mosquitoes apparently produced a higher number of eggs than 9-11 day-old mosquitoes, while there was no significant difference between the two groups. The number of laid eggs per one surviving blood-fed mosquito in the dark condition was significantly higher than that in the light condition (p = 0.03). Providing an oviposition dish at 72 hours after blood meal resulted in a significantly higher number of laid eggs per one surviving blood-fed mosquito than at 48 hours after blood meal (p = 0.03). In conclusion, the optimal condition to have readily available egg supply for transgenic analysis was as follows: 3-5 day-old mosquitoes with an oviposition dish placed at 72 hours after the blood meal in a dark environment.
- Published
- 2014
- Full Text
- View/download PDF
39. Proposed use of spatial mortality assessments as part of the pesticide evaluation scheme for vector control.
- Author
-
Mosqueira B, Chabi J, Chandre F, Akogbeto M, Hougard JM, Carnevale P, and Mas-Coma S
- Subjects
- Animals, Mosquito Control standards, Spatial Analysis, Survival Analysis, Anopheles drug effects, Anopheles physiology, Culex drug effects, Culex physiology, Insecticides administration & dosage, Mosquito Control methods
- Abstract
Background: The WHO Pesticide Evaluation Scheme to evaluate the efficacy of insecticides does not include the testing of a lethal effect at a distance. A tool was developed to evaluate the spatial mortality of an insecticide product against adult mosquitoes at a distance under laboratory and field conditions. Operational implications are discussed., Methods: Insecticide paint, Inesfly 5A IGR™, containing two organophosphates (OPs): chlorpyrifos and diazinon, and one insect growth regulator (IGR): pyriproxyfen, was the product tested. Laboratory tests were performed using "distance boxes" with surfaces treated with one layer of control or insecticide paint at a dose of 1 kg/6 sq m. Field tests were conducted up to 12 months in six experimental huts randomly allocated to control or one or two layers of insecticide paint at 1 kg/6 sq m. All distance tests were performed using reference-susceptible strains of Anopheles gambiae and Culex quinquefasciatus left overnight at a distance of 1 m from control or treated surfaces., Results: After an overnight exposition at distances of 1 m, field and laboratory evaluations at 0 months after treatment (T0) yielded 100% mortality rates on surfaces treated with one layer at 1 kg/6 sq m against susceptible strains of An. gambiae and Cx. quinquefasciatus. Testing for long-term efficacy in the field gave mortality rates of 96-100% after an overnight exposition at a distance of 1 m for up to 12 months in huts where a larger volume was treated (walls and ceilings) with one or two layers of insecticide paint., Conclusion: A comprehensive evaluation of the full profile of insecticide products, both upon contact and spatially, may help rationalize vector control efforts more efficiently. Treating a large enough volume may extend a product's mortality efficacy in the long-term, which contact tests would fail to assess. It is hereby proposed to explore the development of cost effective methods to assess spatial mortality and to include them as one additional measurement of insecticide efficacy against mosquitoes and other arthropod vectors in WHOPES Phase I and Phase II studies.
- Published
- 2013
- Full Text
- View/download PDF
40. Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial.
- Author
-
Corbel V, Akogbeto M, Damien GB, Djenontin A, Chandre F, Rogier C, Moiroux N, Chabi J, Banganna B, Padonou GG, and Henry MC
- Subjects
- Animals, Benin epidemiology, Child, Preschool, Culicidae drug effects, Drug Resistance, Female, Humans, Incidence, Infant, Insect Vectors drug effects, Insecticides, Male, Nitriles pharmacology, Phenylcarbamates pharmacology, Poisson Distribution, Pregnancy, Pyrethrins pharmacology, Insect Control methods, Insecticide-Treated Bednets, Malaria, Falciparum epidemiology, Malaria, Falciparum prevention & control, Phenylcarbamates administration & dosage, Pregnancy Complications, Parasitic prevention & control
- Abstract
Background: Malaria control efforts and elimination in Africa are being challenged by the development of resistance of parasites to antimalarial drugs and vectors to insecticides. We investigated whether the combination of long-lasting insecticidal mosquito nets (LLINs) with indoor residual spraying (IRS) or carbamate-treated plastic sheeting (CTPS) conferred enhanced protection against malaria and better management of pyrethroid-resistance in vectors than did LLINs alone., Methods: We did a cluster randomised controlled trial in 28 villages in southern Benin, west Africa. Inclusion criteria of the villages were moderate level of pyrethroid resistance in malaria vectors and minimum distance between villages of 2 km. We assessed four malaria vector control interventions: LLIN targeted coverage to pregnant women and children younger than 6 years (TLLIN, reference group), LLIN universal coverage of all sleeping units (ULLIN), TLLIN plus full coverage of carbamate-IRS applied every 8 months (TLLIN+IRS), and ULLIN plus full coverage of CTPS lined up to the upper part of the household walls (ULLIN+CTPS). The interventions were allocated to villages by a block randomisation on the basis of preliminary surveys and children of each village were randomly selected to participate with computer-generated numbers. The primary endpoint was the incidence density rate of Plasmodium falciparum clinical malaria in children younger than 6 years as was analysed by Poisson regression taking into account the effect of age and the sampling design with a generalised estimating equation approach. Clinical and parasitological information were obtained by active case detection of malaria episodes during 12 periods of 6 consecutive days scheduled at six weekly intervals and by cross-sectional surveys of asymptomatic plasmodial infections. Children or study investigators were not masked to study group. This study is registered with Current Controlled Trials, number ISRCTN07404145., Findings: Of 58 villages assessed, 28 were randomly assigned to intervention groups. 413-429 children were followed up in each intervention group for 18 months. The clinical incidence density of malaria was not reduced in the children from the ULLIN group (incidence density rate 0·95, 95% CI 0·67-1·36, p=0·79), nor in those from the TLLIN+IRS group (1·32, 0·90-1·93, p=0·15) or from the ULLIN+CTPS group (1·05, 0·75-1·48, p=0·77) compared with the reference group (TLLIN). The same trend was observed with the prevalence and parasite density of asymptomatic infections (non significant regression coefficients)., Interpretation: No significant benefit for reducing malaria morbidity, infection, and transmission was reported when combining LLIN+IRS or LLIN+CTPS compared with a background of LLIN coverage. These findings are important for national malaria control programmes and should help the design of more cost-effective strategies for malaria control and elimination., Funding: Ministère Français des Affaires Etrangères et Européennes (FSP project 2006-22), Institut de Recherche pour le Développement, President's Malaria Initiative (PMI) of US Governement., (Copyright © 2012 Elsevier Ltd. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
41. Efficacy of an insecticide paint against malaria vectors and nuisance in West Africa--part 2: field evaluation.
- Author
-
Mosqueira B, Chabi J, Chandre F, Akogbeto M, Hougard JM, Carnevale P, and Mas-Coma S
- Subjects
- Animals, Benin, Chlorpyrifos pharmacology, Diazinon pharmacology, Drug Resistance, Female, Pyrethrins, Pyridines pharmacology, Survival Analysis, Time Factors, Anopheles drug effects, Culex drug effects, Insecticides pharmacology, Mosquito Control methods, Paint
- Abstract
Background: Widespread resistance of the main malaria vector Anopheles gambiae to pyrethroids reported in many African countries and operational drawbacks to current IRS methods suggest the convenience of exploring new products and approaches for vector control. Insecticide paint Inesfly 5A IGR™, containing two organophosphates (OPs), chlorpyrifos and diazinon, and one insect growth regulator (IGR), pyriproxyfen, was tested in Benin, West Africa, for 12 months., Methods: Field trials were conducted in six experimental huts that were randomly allocated to one or two layers of insecticide at 1 Kg/6 m2 or control. Evaluations included: (i) early mosquito collection, (ii) mosquito release experiments, (iii) residual efficacy tests and (iv) distance tests. Early mosquito collections were performed on local populations of pyrethroid-resistant An. gambiae and Culex quinquefasciatus. As per WHOPES phase II procedures, four entomological criteria were evaluated: deterrence, excito-repellence, blood-feeding inhibition and mortality. Mosquito release experiments were done using local malaria-free An. gambiae females reared at the CREC insectarium. Residual efficacy tests and distance tests were performed using reference susceptible strains of An. gambiae and Cx. quinquefasciatus., Results: Six months after treatment, mortality rates were still 90-100% against pyrethroid-resistant mosquito populations in experimental huts. At nine months, mortality rates in huts treated with two layers was still about 90-93% against An. gambiae and 55% against Cx. quinquefasciatus. Malaria-free local mosquito release experiments yielded a 90% blood-feeding inhibition in the absence of a physical barrier. A long-term residual efficacy of 12 months was observed by WHO-bioassays in huts treated with two layers (60-80%). Mortality after an overnight exposition at distances of 1 meter was 96-100% for up to 12 months., Conclusion: The encouraging results obtained on the insecticide paint Inesfly 5A IGR™ in terms of mortality, be it in direct contact or at a distance, and its new operational approach could constitute an additional option in malaria control efforts in areas of pyrethroid resistance. Phase III studies will be performed to assess the product's epidemiological impact and sociological acceptance.
- Published
- 2010
- Full Text
- View/download PDF
42. Indoor use of plastic sheeting impregnated with carbamate combined with long-lasting insecticidal mosquito nets for the control of pyrethroid-resistant malaria vectors.
- Author
-
Djènontin A, Chandre F, Dabiré KR, Chabi J, N'guessan R, Baldet T, Akogbéto M, and Corbel V
- Subjects
- Animals, Anopheles genetics, Female, Genotype, Humans, Insect Vectors genetics, Male, Mosquito Control, Mutation, Plastics, Pyrethrins pharmacology, Anopheles drug effects, Insect Vectors drug effects, Insecticide Resistance, Insecticides pharmacology, Mosquito Nets, Phenylcarbamates pharmacology
- Abstract
The combined efficacy of a long-lasting insecticidal net (LLIN) and a carbamate-treated plastic sheeting (CTPS) or indoor residual spraying (IRS) for control of insecticide-resistant mosquitoes was evaluated in experimental huts in Burkina Faso. Anopheles gambiae from the area is resistant to pyrethroids and to a lesser extent, carbamates. Relatively low mortality rates were observed with the LLIN (44%), IRS (42%), and CTPS (52%), whereas both combinations killed significantly more mosquitoes (~70% for LLIN + CTPS and LLIN + IRS). Blood feeding by An. gambiae was uninhibited by IRS and CTPS compared with LLIN (43%), LLIN + CTPS (58%), and LLIN + IRS (56%). No evidence for selection of the kdr and ace-1(R) alleles was observed with the combinations, whereas a survival advantage of mosquitoes bearing the ace-1(R) mutation was observed with IRS and CTPS. The results suggest that the combination of the two interventions constitutes a potential tool for vector-resistance management.
- Published
- 2010
- Full Text
- View/download PDF
43. Field efficacy of a new mosaic long-lasting mosquito net (PermaNet 3.0) against pyrethroid-resistant malaria vectors: a multi centre study in Western and Central Africa.
- Author
-
Corbel V, Chabi J, Dabiré RK, Etang J, Nwane P, Pigeon O, Akogbeto M, and Hougard JM
- Subjects
- Animals, Benin, Burkina Faso, Cameroon, Feeding Behavior drug effects, Humans, Insecticide Resistance, Laundering, Malaria parasitology, Anopheles drug effects, Insecticide-Treated Bednets, Insecticides, Malaria prevention & control, Mosquito Control methods, Pyrethrins
- Abstract
Background: Due to the spread of pyrethroid-resistance in malaria vectors in Africa, new strategies and tools are urgently needed to better control malaria transmission. The aim of this study was to evaluate the performances of a new mosaic long-lasting insecticidal net (LLIN), i.e. PermaNet 3.0, against wild pyrethroid-resistant Anopheles gambiae s.l. in West and Central Africa., Methods: A multi centre experimental hut trial was conducted in Malanville (Benin), Vallée du Kou (Burkina Faso) and Pitoa (Cameroon) to investigate the exophily, blood feeding inhibition and mortality induced by PermaNet 3.0 (i.e. a mosaic net containing piperonyl butoxide and deltamethrin on the roof) comparatively to the WHO recommended PermaNet 2.0 (unwashed and washed 20-times) and a conventionally deltamethrin-treated net (CTN)., Results: The personal protection and insecticidal activity of PermaNet 3.0 and PermaNet 2.0 were excellent (>80%) in the "pyrethroid-tolerant" area of Malanville. In the pyrethroid-resistance areas of Pitoa (metabolic resistance) and Vallée du Kou (presence of the L1014F kdr mutation), PermaNet 3.0 showed equal or better performances than PermaNet 2.0. It should be noted however that the deltamethrin content on PermaNet 3.0 was up to twice higher than that of PermaNet 2.0. Significant reduction of efficacy of both LLIN was noted after 20 washes although PermaNet 3.0 still fulfilled the WHO requirement for LLIN., Conclusion: The use of combination nets for malaria control offers promising prospects. However, further investigations are needed to demonstrate the benefits of using PermaNet 3.0 for the control of pyrethroid resistant mosquito populations in Africa.
- Published
- 2010
- Full Text
- View/download PDF
44. Control of pyrethroid and DDT-resistant Anopheles gambiae by application of indoor residual spraying or mosquito nets treated with a long-lasting organophosphate insecticide, chlorpyrifos-methyl.
- Author
-
N'Guessan R, Boko P, Odjo A, Chabi J, Akogbeto M, and Rowland M
- Subjects
- Animals, DDT, Malaria, Falciparum prevention & control, Plasmodium falciparum isolation & purification, Pyrethrins, Anopheles drug effects, Chlorpyrifos analogs & derivatives, Insecticide Resistance drug effects, Insecticide-Treated Bednets, Mosquito Control methods
- Abstract
Background: Scaling up of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) with support from the Global Fund and President's Malaria Initiative is providing increased opportunities for malaria control in Africa. The most cost-effective and longest-lasting residual insecticide DDT is also the most environmentally persistent. Alternative residual insecticides exist, but are too short-lived or too expensive to sustain. Dow Agrosciences have developed a microencapsulated formulation (CS) of the organophosphate chlorpyrifos methyl as a cost-effective, long-lasting alternative to DDT., Methods: Chlorpyrifos methyl CS was tested as an IRS or ITN treatment in experimental huts in an area of Benin where Anopheles gambiae and Culex quinquefasiactus are resistant to pyrethroids, but susceptible to organophosphates. Efficacy and residual activity was compared to that of DDT and the pyrethroid lambdacyalothrin., Results: IRS with chlorpyrifos methyl killed 95% of An. gambiae that entered the hut as compared to 31% with lambdacyhalothrin and 50% with DDT. Control of Cx. quinquefasciatus showed a similar trend; although the level of mortality with chlorpyrifos methyl was lower (66%) it was still much higher than for DDT (14%) or pyrethroid (15%) treatments. Nets impregnated with lambdacyhalothrin were compromised by resistance, killing only 30% of An. gambiae and 8% of Cx. quinquefasciatus. Nets impregnated with chlorpyrifos methyl killed more (45% of An gambiae and 15% of Cx. quinquefasciatus), but its activity on netting was of short duration. Contact bioassays on the sprayed cement-sand walls over the nine months of monitoring showed no loss of activity of chlorpyrifos methyl, whereas lambdacyhalothrin and DDT lost activity within a few months of spraying., Conclusion: As an IRS treatment against pyrethroid resistant mosquitoes chlorpyrifos methyl CS outperformed DDT and lambdacyhalothrin. In IRS campaigns, chlorpyrifos methyl CS should show higher, more-sustained levels of malaria transmission control than conventional formulations of DDT or pyrethroids. The remarkable residual activity indicates that cost-effective alternatives to DDT are feasible through modern formulation technology.
- Published
- 2010
- Full Text
- View/download PDF
45. Managing insecticide resistance in malaria vectors by combining carbamate-treated plastic wall sheeting and pyrethroid-treated bed nets.
- Author
-
Djènontin A, Chabi J, Baldet T, Irish S, Pennetier C, Hougard JM, Corbel V, Akogbéto M, and Chandre F
- Subjects
- Animals, Benin, Humans, Insect Bites and Stings prevention & control, Insecticide Resistance, Laundering, Mosquito Control methods, Phenylcarbamates, Plastics, Anopheles drug effects, Carbamates pharmacology, Culex drug effects, Insecticide-Treated Bednets, Insecticides, Nitriles pharmacology, Pyrethrins pharmacology
- Abstract
Background: Pyrethroid resistance is now widespread in Anopheles gambiae, the major vector for malaria in sub-Saharan Africa. This resistance may compromise malaria vector control strategies that are currently in use in endemic areas. In this context, a new tool for management of resistant mosquitoes based on the combination of a pyrethroid-treated bed net and carbamate-treated plastic sheeting was developed., Methods: In the laboratory, the insecticidal activity and wash resistance of four carbamate-treated materials: a cotton/polyester blend, a polyvinyl chloride tarpaulin, a cotton/polyester blend covered on one side with polyurethane, and a mesh of polypropylene fibres was tested. These materials were treated with bendiocarb at 100 mg/m(2) and 200 mg/m(2) with and without a binding resin to find the best combination for field studies. Secondly, experimental hut trials were performed in southern Benin to test the efficacy of the combined use of a pyrethroid-treated bed net and the carbamate-treated material that was the most wash-resistant against wild populations of pyrethroid-resistant An. gambiae and Culex quinquefasciatus., Results: Material made of polypropylene mesh (PPW) provided the best wash resistance (up to 10 washes), regardless of the insecticide dose, the type of washing, or the presence or absence of the binding resin. The experimental hut trial showed that the combination of carbamate-treated PPW and a pyrethroid-treated bed net was extremely effective in terms of mortality and inhibition of blood feeding of pyrethroid-resistant An. gambiae. This efficacy was found to be proportional to the total surface of the walls. This combination showed a moderate effect against wild populations of Cx. quinquefasciatus, which were strongly resistant to pyrethroid., Conclusion: These preliminary results should be confirmed, including evaluation of entomological, parasitological, and clinical parameters. Selective pressure on resistance mechanisms within the vector population, effects on other pest insects, and the acceptability of this management strategy in the community also need to be evaluated.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.