18 results on '"COHOMOLOGIA DE GRUPOS"'
Search Results
2. The Serre Spectral Sequence
- Author
-
Martins, Matheus Henrique, Universidade Estadual Paulista (Unesp), and Monis, Thaís Fernanda Mendes [UNESP]
- Subjects
Spectral sequence ,Cohomologia de grupos ,Topologia algébrica ,Fibration ,Sequência espectral (Matematica) ,Fibração ,Cohomology operations ,Algebraic topology - Abstract
Submitted by Matheus Henrique Martins (matheus_rickmartins@live.com) on 2021-02-26T03:13:29Z No. of bitstreams: 1 AsequenciaespectraldeSerre.pdf: 517187 bytes, checksum: 747b1738e6e06b29ca1777377c0a53ce (MD5) Approved for entry into archive by LUCIANE ANTONIA PASSONI null (luciane@ibilce.unesp.br) on 2021-03-02T23:27:44Z (GMT) No. of bitstreams: 1 martins_mh_me_sjrp.pdf: 546237 bytes, checksum: 1caa14532bda4f31b4cee097cc22c48f (MD5) Made available in DSpace on 2021-03-02T23:27:44Z (GMT). No. of bitstreams: 1 martins_mh_me_sjrp.pdf: 546237 bytes, checksum: 1caa14532bda4f31b4cee097cc22c48f (MD5) Previous issue date: 2020-04-08 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Nessa dissertação, estudamos a construção da sequência espectral de Serre associada a uma fibração. Para culminar em sua formulação, passamos por tópicos da Topologia Algébrica taiscomo álgebra homológica, grupos de homotopia, grupos de homologia e de cohomologia, sis-temas de coeficientes locais e grupos de homologia e cohomologia com coeficientes locais. In the present dissertation, we study the construction of the Serre spectral sequence associated to a fibration. In order to get its formulation, we first developed topics in Algebraic Topology such as homological algebra, homotopy groups, homology and cohomology groups, system of local coefficients, and homology and cohomology groups with local coefficients.
- Published
- 2020
3. Inclusion of configuration spaces in Cartesian products, and the virtual cohomological dimension of the braid groups of 𝕊2 and ℝP2
- Author
-
Daciberg Lima Gonçalves and John Guaschi
- Subjects
Pure mathematics ,General Mathematics ,010102 general mathematics ,Braid group ,Cartesian product ,Cohomological dimension ,01 natural sciences ,COHOMOLOGIA DE GRUPOS ,010101 applied mathematics ,symbols.namesake ,symbols ,0101 mathematics ,Inclusion (education) ,Mathematics - Published
- 2017
- Full Text
- View/download PDF
4. Homology of $\GL_n$ over infinite fields outside the stability range
- Author
-
Behrooz Mirzaii
- Subjects
COHOMOLOGIA DE GRUPOS ,Crystallography ,Algebra and Number Theory ,Infinite field ,Cokernel ,Mathematics - K-Theory and Homology ,FOS: Mathematics ,K-Theory and Homology (math.KT) ,Primary: 19D55, 19D45, Secondary: 20J06 ,Homology (mathematics) ,Kernel (category theory) ,Range (computer programming) ,Mathematics - Abstract
For an infinite field $F$, we study the kernel of the map $H_{n}(\mathrm{GL}_{n-1}(F),\mathbb{Z}\Big[\frac{1}{(m-2)!}\Big]) \to H_{n}(\mathrm{GL}_{n}(F),\mathbb{Z}\Big[\frac{1}{(m-2)!}\Big])$ and the cokernel of $H_{n+1}\Big(\mathrm{GL}_{n-1}(F),\mathbb{Z}\Big[\frac{1}{(m-2)!}\Big]\Big) \to H_{n+1}\Big(\mathrm{GL}_{n}(F),\mathbb{Z}\Big[\frac{1}{(m-2)!}\Big]\Big)$. We give conjectural estimates of these kernels and cokernels and prove our conjectures for $n\leq 4$., Comment: 26 pages, Latex
- Published
- 2020
- Full Text
- View/download PDF
5. Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces
- Author
-
John Guaschi, Daciberg Lima Gonçalves, Miguel Maldonado, Institute of Mathematics and Statistics [Sao Paulo] (IME-USP), Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), Université de Caen Normandie (UNICAEN), Normandie Université (NU), Universidad Autonoma de Zacatecas [Autonomous University of Zacatecas] (UAZ), and LAISLA
- Subjects
MSC 2010: 57N05, 20F36, 55R80, 55P20, 20F38, 57M07, 20J06 ,Class (set theory) ,Braid group ,Boundary (topology) ,Cohomological dimension ,01 natural sciences ,finite coverings ,Combinatorics ,COHOMOLOGIA DE GRUPOS ,Mathematics::Group Theory ,Mathematics - Geometric Topology ,Mathematics (miscellaneous) ,Genus (mathematics) ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,0103 physical sciences ,Mapping class groups ,Braid ,FOS: Mathematics ,0101 mathematics ,Mathematical Physics ,Mathematics ,Applied Mathematics ,010102 general mathematics ,surface braid groups ,Geometric Topology (math.GT) ,(virtual) cohomological dimension ,Surface (topology) ,Mathematics::Geometric Topology ,Mapping class group ,010307 mathematical physics ,embeddings - Abstract
International audience; In this paper, we make use of the relations between the braid and mapping class groups of a compact, connected, non-orientable surface $N$ without boundary and those of its orientable double covering $S$ to study embeddings of these groups and their (virtual) cohomological dimensions. We first generalise results of Birman and Chillingworth and of Gonçalves and Guaschi to show that the mapping class group $MCG(N ; k)$ of $N$ relative to a $k$-point subset embeds in the mapping class group $MCG(S; 2k)$ of $S$ relative to a $2k$-point subset. We then compute the cohomological dimension of the braid groups of all compact, connected aspherical surfaces without boundary. Finally, if the genus of $N$ is greater than or equal to $2$, we give upper bounds for the virtual cohomological dimension of $MCG(N ; k)$.
- Published
- 2018
6. The cohomology ring of certain families of periodic virtually cyclic groups
- Author
-
Daciberg Lima Gonçalves, Sérgio Tadao Martins, and Márcio de Jesus Soares
- Subjects
Pure mathematics ,Computer Science::Information Retrieval ,General Mathematics ,010102 general mathematics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) ,Cyclic group ,Group Theory (math.GR) ,20J06 (Primary), 20F50 (Secondary) ,01 natural sciences ,Cohomology ,Cohomology ring ,COHOMOLOGIA DE GRUPOS ,Mathematics::K-Theory and Homology ,0103 physical sciences ,FOS: Mathematics ,Computer Science::General Literature ,Algebraic Topology (math.AT) ,010307 mathematical physics ,Mathematics - Algebraic Topology ,0101 mathematics ,Mathematics - Group Theory ,Mathematics - Abstract
Let G be a virtually cyclic of the form (Z_a x Z_b) x Z or [Z_a x (Z b x Q_{2^i})] x Z. We compute the integral cohomology ring of G, and then obtain the periodicity of the Farell cohomology of these groups., Comment: 22 pages
- Published
- 2017
7. On cohomologies and extensions of cyclic groups
- Author
-
Marek Golasiński and Daciberg Lima Gonçalves
- Subjects
p-group ,Discrete mathematics ,Eulerʼs function ,Group isomorphism ,Dicyclic group ,Group extension ,Group cohomology ,Cyclic group ,Automorphism group ,COHOMOLOGIA DE GRUPOS ,Combinatorics ,Extension ,Mathematics::K-Theory and Homology ,Semi-direct product ,Cohomology group ,Geometry and Topology ,Quotient group ,Schur multiplier ,Mathematics - Abstract
Cohomology groups H s ( Z n , Z m ) are studied to describe all groups up to isomorphism which are (central) extensions of the cyclic group Z n by the Z n -module Z m . Further, for each such a group the number of non-equivalent extensions is determined.
- Published
- 2011
- Full Text
- View/download PDF
8. Grupos wallpaper e sua relação com cohomologia de grupos
- Author
-
Martins, Rafaella de Souza [UNESP], Universidade Estadual Paulista (Unesp), Fanti, Ermínia de Lourdes Campello [UNESP], and Silva, Flávia Souza Machado da [UNESP]
- Subjects
Matemática ,Cohomologia de grupos ,Grupos de simetria ,Topologia algebrica ,Algebraic topology - Abstract
Made available in DSpace on 2015-03-03T11:52:27Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-03-25Bitstream added on 2015-03-03T12:07:37Z : No. of bitstreams: 1 000803609.pdf: 784644 bytes, checksum: 21cd3aa175119679ab082ffb06ba43c1 (MD5) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) O objetivo principal deste trabalho e estudar a relação entre cohomologia de grupos e o problema de classificar grupos wallpaper, que são grupos de simetrias de certas figuras do plano chamadas padrões wallpaper. Há, a menos de equivalência, exatamente 17 grupos wallpaper, que classificamos usando teoria dos grupos e algebra linear. Dado um grupo wallpaper G, temos associado inicialmente a G um subgrupo abeliano normal T (subgrupo das translações) chamado reticulado, um grupo G0 = G=T chamado grupo ponto, uma ação de G0 sobre T (de modo que T e um ZG0-m odulo) e uma extensão do grupo G0 por T , 0 ! T ! G ! G0 ! 0. Usando o fato de que existe uma correspondência biunívoca entre o segundo grupo de cohomologia, H2(G0; T ), e o conjunto das classes de equivalência de G0 por T que dão origem a ação induzida de G0 sobre T e computando H2(G0; T ), para as várias possibilidades para G0, apresentamos um limitante superior para o número de grupos wallpaper. Para o cálculo de H2(G0; T ), para certos grupos pontos G0, utiliza-se a sequência espectral cohomológica e a sequência exata de cinco termos The main goal of this work is to study the relation between the cohomology of groups and the problem of classifying wallpaper groups, which are symmetry groups of certain gures on the plane called wallpaper patterns. There are, up to isomorphism/equivalence, exactly 17 wallpaper groups, classi ed by using group theory and linear algebra. Given a wallpaper group G, we initially associate to G an abelian normal subgroup T (subgroup of the translations) called lattice, a group G0 = G T called point group, an action of G0 on T (in such a way that T is a ZG0-module) and an extension of the group G0 by T , 0 ?! T ?! G ?! G0 ?! 0. Using the fact that there is an one-to-one correspondence between the second cohomology of group, H2(G0; T ), and the set of equivalence classes of the extensions of G0 by T , that gives rise to the induced action of G0 on T , and computing H2(G0; T ), for the sereval possibilities for G0, we present an upper bound for the number of wallpaper groups. For the calculation of H2(G0; T ), of certain point groups G0, it is used the cohomological spectral sequence and the ve terms exact sequence
- Published
- 2014
9. Free and properly discontinuous actions of groups on homotopy $2n$-spheres
- Author
-
Marek Golasiński, Daciberg Lima Gonçalves, and Rolando Jimenez
- Subjects
Physics ,Pure mathematics ,Group (mathematics) ,General Mathematics ,Homotopy ,Cyclic group ,Cohomological dimension ,Type (model theory) ,primary: 57S30, secondary: 20F50, 20J06, 57Q91 ,Mathematics::Algebraic Topology ,COHOMOLOGIA DE GRUPOS ,Homotopy sphere ,Mathematics::K-Theory and Homology ,Free group ,FOS: Mathematics ,Algebraic Topology (math.AT) ,Homomorphism ,Mathematics - Algebraic Topology - Abstract
Let $G$ be a group acting freely, properly discontinuously and cellularly on a finite dimensional $C$W-complex $\Sigma(2n)$ which has the homotopy type of the $2n$- sphere $\mathbb{S}^{2n}$. Then, this action induces an action of the group $G$ on the top cohomology of $\Sigma(2n)$. For the family of virtually cyclic groups, we classify all groups which act on $\Sigma(2n)$, the homotopy type of all possible orbit spaces and all actions on the top cohomology as well. \par Under the hypothesis that $\mbox{dim}\,\Sigma(2n)\leq 2n+1$, we study the groups with the virtual cohomological dimension $\mbox{vcd}\,G, Comment: 19 pages, submitted
- Published
- 2014
10. O invariante E(G, W, M): algumas propriedades e aplicações na teoria de decomposição de grupos
- Author
-
Silva, Letícia Sanches [UNESP], Universidade Estadual Paulista (Unesp), and Fanti, Ermínia de Lourdes Campello [UNESP]
- Subjects
Invariante E (G,W,M) ,Cohomologia de grupos ,Decomposição de grupos - Abstract
Made available in DSpace on 2015-09-17T15:24:05Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-02-27. Added 1 bitstream(s) on 2015-09-17T15:48:26Z : No. of bitstreams: 1 000846965.pdf: 797428 bytes, checksum: daaf15e4de7fbef0eebfbdbc0bb8123d (MD5) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Em [6], Andrade e Fanti definiram o invariante E(G, W, M), sendo G um grupo, W um G-conjunto e M um Z2G-m'odulo, e apresentaram alguns resultados usando E(G, W, Z2) ( Z2 visto como Z2G-m'odulo trivial) relacionados com decomposi¸c˜ao de grupos e dualidade. E(G, W, M) 'e definido usando (co)homologia de grupos para o par ((G, W), M) seguindo [14]. O objetivo deste trabalho 'e apresentar os resultados dados em [6], por'em acrescentando as provas de alguns resultados que s˜ao mencionados em [6], mas que n˜ao foram provados, como por exemplo, a invariˆancia de E(G, W, M) por pares isomorfos e a independˆencia do conjunto de representantes das G-'orbitas. Procurou-se tamb'em generalizar alguns resultados para um Z2G-m'odulo M qualquer (n˜ao necessariamente Z2), e apresentar algumas outras propriedades de E(G, W, M), em especial para o Z2G-m'odulo FTG, sendo T um subgrupo de G, explorando, sempre que poss'ıvel, sua rela¸c˜ao com decomposi¸c˜ao de grupos. Muitos desses resultados est˜ao fortemente relacionados com alguns apresentados em [7], para o invariante de pares de grupos E(G, S, M), sendo S uma fam'ılia de subgrupos de G. In [6], Andrade and Fanti defined the invariant E(G,W,M), where G is a group, W is a G-set and M is a Z2G-module, and presented some results using E(G,W, Z2) ( Z2 seen as a trivial Z2G-module) related to splitting of groups and duality. E(G,W,M) is defined using (co)homology of groups for the pair ((G,W),M) following [14]. The purpose of this work is to present the results given in [6] but adding proofs of some results that were referred but not proved there, such as the invariance ofE(G,W,M) for isomorphic pairs and the independence of the set of orbit representatives in W. We also attempt to generalize some results for any Z2G-m'odulo M (not necessarily Z2) and present some other properties of E(G,W,M), specially for the Z2G-module FTG where T is a subgroup of G, exploring, whenever possible, its relationship with splitting of groups. Many of those results are strongly related with some given in [7] for the invariant of pairs of groups E(G, S,M) where S is a family of subgroups of G.
- Published
- 2013
11. Grupos p-locales finitos y grupos de cohomología
- Author
-
Garaialde Ocaña, Oihana
- Subjects
Grupo p-local finito ,Cohomología, Teoría de ,Cohomología de grupos ,Sucesión espectral - Abstract
Comunicación científica impartida por Oihana Garaialde Ocaña en el Seminario INSEGTO del Departamento de Álgebra, Geometría y Topología de la UMA. Definimos ciertos espacios topológicos llamados grupos p-locales finitos e introducimos una sucesión espectral que calcula su cohomología en ciertos casos, incluyendo algunos grupos p-locales finitos "exóticos". Presentaremos un método para calcular los grupos de cohomología de p-grupos de coclase maximal. Por último calculamos el anillo de cohomología del grupo finito simple J_2 en el primo 3. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.
- Published
- 2013
12. Decomposição de grupos de dualidade de Poincaré, obstruções sing e invariantes cohomológicos
- Author
-
Cavalcanti, Maria Paula dos Santos [UNESP], Universidade Estadual Paulista (Unesp), and Fanti, Ermínia de Lourdes Campello [UNESP]
- Subjects
Cohomologia ,Decomposição de grupos ,Cohomologia de grupos ,Topologia algebrica ,Obstructions sing ,Osbstruções sing ,Splittings of groups ,Poincaré duality groups and pairs ,Poincaré, Dualidade de ,Dualidade (Matematica) ,Relative cohomology of groups - Abstract
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-26Bitstream added on 2014-06-13T20:16:04Z : No. of bitstreams: 1 cavalcanti_mps_me_sjrp.pdf: 612728 bytes, checksum: 47d18c69b5ae7b113879890007734ec5 (MD5) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) O obejtivo principal deste trabalho é estudar as obstruções sing que desempenham papel importante nas demonstrações de certos resultados sobre decomposição de grupos que satisfazem certas hipóteses de dualidade apresentados em [16] e [17], em particular, sobre decomposição de um grupo G adapatada a uma família S de subgrupos de G com (G,S) um par de dualidade de Poincaré. Alguns invariantes cohomológicos e certos resultados envolvendo tais invariantes, decomposição de grupos e/ou grupos e pares de dualidade são também apresentados. The main objective of this work to study the obstructions sing which play an important role in demonstrating certain results on the splittings of groups that satisfy certain hypotheses of duality presented in [16] and [17], in particular, the decomposition of a group G adapted to a family S of subgroups of G with (G,S) a Poincaré duality pair. Some cohomological invariants and certain results involving such invariants, a splittings of groups and/or groups and pairs of duality are also presented.
- Published
- 2011
- Full Text
- View/download PDF
13. Sequências espectrais e aplicações aos cálculos de cohomologias de espaços fibrados
- Author
-
Souza, Beethoven Adriano de [UNESP], Universidade Estadual Paulista (Unesp), and Vieira, João Peres [UNESP]
- Subjects
Cohomologia de grupos ,Espaços fibrados (Matemática) ,Topologia algebrica ,Seqüências espectrais (Matemática) ,Classical groups ,Espectral sequences ,Fibrations - Abstract
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-01-27Bitstream added on 2014-06-13T18:06:57Z : No. of bitstreams: 1 souza_ba_me_sjrp.pdf: 780089 bytes, checksum: 497c7f887fe3a317fcd7ce438ebf546b (MD5) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Este trabalho tem como objetivo principal o cálculo dos grupos de Cohomologia de alguns Grupos Clássicos como o Grupo das Rotações do Espaço Euclidiano Rn (SO(n)), o Grupo Unitário (U(n)), o Grupo Especial Unitário (SU(n)) e o Grupo Simplético (Sp(n)). Além disso calcularemos também o grupo de Cohomologia do Espaço Projetivo Complexo (CP(n)). Para esses cálculos usaremos sequências espectrais e o Teorema de Serre para Cohomologia. The main purpose of this work is to calculate the cohomology groups of some classical groups as the rotation groups of the euclidean space Rn, SO(n), the unitary group U(n), your special unitary subgroup SU(n) and the symplectic group Sp(n). Moreover we also calculate the cohomology groups of complex projective space CP(n). For these calculus we will use spectral sequences and the Serre's Theorem for Cohomology.
- Published
- 2009
14. Dualidade de Poincaré e invariantes cohomológicos
- Author
-
Cellini, Caroline Paula [UNESP], Universidade Estadual Paulista (Unesp), and Fanti, Ermínia de Lourdes Campello [UNESP]
- Subjects
Cohomologia ,Cohomologia de grupos ,Poincaré duality ,Topologia algebrica ,Duality groups ,Cohomology with compact support ,Ends de pares de grupos ,Aspherical manifolds ,Poincaré, Dualidade de ,Dualidade (Matematica) ,Cohomological invariant ends - Abstract
Made available in DSpace on 2014-06-11T19:30:22Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-03-31Bitstream added on 2014-06-13T19:19:04Z : No. of bitstreams: 1 cellini_cp_me_sjrp.pdf: 781641 bytes, checksum: 70ed1b385d132f8255370c0014be09b4 (MD5) Neste trabalho são abordados alguns aspectos da teoria de dualidade. Ele pode ser dividido em três partes principais. Na primeira demonstramos o teorema de Dualidade de Poincaré para variedades (sem bordo) orientáveis. Para tanto, fez-se necessário o uso do limite direto e cohomologia com suporte compacto. Na segunda definimos grupos de dualidade, em particular, grupo de dualidade de Poincaré, apresentamos alguns resultados e observações sobre a relação existente entre tais grupos e os grupos fundamentais de variedades asféricas fechadas, que é ainda um problema em aberto. Finalmente, alguns resultados envolvendo invariantes cohomológicos ends e grupos de dualidade são apresentados. In this work we consider some aspects of duality theory. It can be divided in three principal parts. In the first we prove the Poincaré Duality theorem for orientable manifolds (without boundary). For that, it is necessary the use of the direct limit and cohomology with compact supports. In the second part we de¯ne duality groups, in particular, Poincaré duality groups, we introduce some results and observations about the relationship between such groups and fundamental groups of aspherical closed manifolds, that still is an open problem. Finally, some results envolving the cohomological invariant ends and duality groups are presented.
- Published
- 2008
15. Cohomologia de grupos e algumas aplicações
- Author
-
Castro, Francielle Rodrigues de [UNESP], Universidade Estadual Paulista (Unesp), and Fanti, Ermínia de Lourdes Campello [UNESP]
- Subjects
Cohomology of Groups ,Classification of Groups ,Cohomologia de grupos ,Schur-Zassenhaus, Teorema de ,Topologia algebrica ,Extensões de grupos (Matematica) ,Decomposition of Groups - Abstract
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-03-15Bitstream added on 2014-06-13T19:47:19Z : No. of bitstreams: 1 castro_fr_me_sjrp.pdf: 783980 bytes, checksum: fd80e9aa8c69641da08ee43dfa94509d (MD5) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) O objetivo principal deste trabalho é estudar a Teoria de Cohomologia de Grupos visando apresentar de forma detalhada algumas aplicações dessa teoria na Topologia e na Algebra, mais especificamente na Teoria de Grupos, com destaque para o Teorema de Schur-Zassenhaus e o Teorema de Classificação de p-grupos que possuem um subgrupo ciclico de índice p (p primo). The aim of this work is to study the Cohomology Theory of Groups in order to present in detailed form some applications of this theory in Topology and in Algebra, more specifically, in the Theory of Groups, with prominence for the Schur-Zassenhaus Theorem and the Theorem of Classification of p-groups which contain a cyclic subgroup of index p, where p is a prime.
- Published
- 2006
16. Suites spectrales de Hochschild-Serre à coefficients dans un espace semi-normé
- Author
-
Bouarich, A. and Bouarich, A.
- Abstract
In this paper, we prove the existence of the theory of spectral sequences in the category of real semi normed spaces. Using this theory, we associate to any extension of discrete groups the Hochschild-Serre spectral sequence in bounded cohomology with coefficients, in addition, we give the explicit expression of the first and the second term of this spectral sequence without further hypothesis.
- Published
- 2005
17. A 2-dimensional cohomology with coefficients in categorical groups
- Author
-
Carrasco Carrasco, María Pilar, Martinez Moreno, Juan, Carrasco Carrasco, María Pilar, and Martinez Moreno, Juan
- Published
- 1997
18. A note on Hacque's cohomology of rings groups and extensions of rings groups by groups
- Author
-
Bullejos Lorenzo, Manuel and Bullejos Lorenzo, Manuel
- Published
- 1996
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.