1. Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals.
- Author
-
Gilmore KA, Affolter M, Lewis-Swan RJ, Barberena D, Jordan E, Rey AM, and Bollinger JJ
- Abstract
Fully controllable ultracold atomic systems are creating opportunities for quantum sensing, yet demonstrating a quantum advantage in useful applications by harnessing entanglement remains a challenging task. Here, we realize a many-body quantum-enhanced sensor to detect displacements and electric fields using a crystal of ~150 trapped ions. The center-of-mass vibrational mode of the crystal serves as a high- Q mechanical oscillator, and the collective electronic spin serves as the measurement device. By entangling the oscillator and collective spin and controlling the coherent dynamics via a many-body echo, a displacement is mapped into a spin rotation while avoiding quantum back-action and thermal noise. We achieve a sensitivity to displacements of 8.8 ± 0.4 decibels below the standard quantum limit and a sensitivity for measuring electric fields of 240 ± 10 nanovolts per meter in 1 second. Feasible improvements should enable the use of trapped ions in searches for dark matter., (Copyright © 2021, American Association for the Advancement of Science.)
- Published
- 2021
- Full Text
- View/download PDF