Search

Your search keyword '"Ayyoub, Maha"' showing total 374 results

Search Constraints

Start Over You searched for: Author "Ayyoub, Maha" Remove constraint Author: "Ayyoub, Maha" Publication Year Range Last 50 years Remove constraint Publication Year Range: Last 50 years
374 results on '"Ayyoub, Maha"'

Search Results

1. Abstract A076: T-cell exhaustion is an independent predictive biomarker of clinical outcome in high grade serous ovarian cancer regardless of homologous recombination deficiency status

3. Consensus nomenclature for CD8+ T cell phenotypes in cancer

4. Immune changes in hilar tumor draining lymph nodes following node sparing neoadjuvant chemoradiotherapy of localized cN0 non-small cell lung cancer

5. Data from Dual Relief of T-lymphocyte Proliferation and Effector Function Underlies Response to PD-1 Blockade in Epithelial Malignancies

6. Supplementary Figures and Tables from Dual Relief of T-lymphocyte Proliferation and Effector Function Underlies Response to PD-1 Blockade in Epithelial Malignancies

12. Supplementary Figure 1 from Regulation of CD4+NKG2D+ Th1 Cells in Patients with Metastatic Melanoma Treated with Sorafenib: Role of IL-15Rα and NKG2D Triggering

13. Supplementary Methods from Human TH17 Immune Cells Specific for the Tumor Antigen MAGE-A3 Convert to IFN-γ–Secreting Cells as They Differentiate into Effector T Cells In Vivo

14. Supplementary Figure 1 from Human TH17 Immune Cells Specific for the Tumor Antigen MAGE-A3 Convert to IFN-γ–Secreting Cells as They Differentiate into Effector T Cells In Vivo

15. Supplementary Table 1 from Human TH17 Immune Cells Specific for the Tumor Antigen MAGE-A3 Convert to IFN-γ–Secreting Cells as They Differentiate into Effector T Cells In Vivo

17. Supplementary Figure Legend from Human TH17 Immune Cells Specific for the Tumor Antigen MAGE-A3 Convert to IFN-γ–Secreting Cells as They Differentiate into Effector T Cells In Vivo

18. Supplementary Table 2 from Human TH17 Immune Cells Specific for the Tumor Antigen MAGE-A3 Convert to IFN-γ–Secreting Cells as They Differentiate into Effector T Cells In Vivo

19. Data from Efficacy of Levo-1-Methyl Tryptophan and Dextro-1-Methyl Tryptophan in Reversing Indoleamine-2,3-Dioxygenase–Mediated Arrest of T-Cell Proliferation in Human Epithelial Ovarian Cancer

20. Supplementary Figure Legend from Regulation of CD4+NKG2D+ Th1 Cells in Patients with Metastatic Melanoma Treated with Sorafenib: Role of IL-15Rα and NKG2D Triggering

21. Supplementary Figure 5 from Efficacy of Levo-1-Methyl Tryptophan and Dextro-1-Methyl Tryptophan in Reversing Indoleamine-2,3-Dioxygenase–Mediated Arrest of T-Cell Proliferation in Human Epithelial Ovarian Cancer

22. Supplementary Figure 3 from Regulation of CD4+NKG2D+ Th1 Cells in Patients with Metastatic Melanoma Treated with Sorafenib: Role of IL-15Rα and NKG2D Triggering

23. Data from Regulation of CD4+NKG2D+ Th1 Cells in Patients with Metastatic Melanoma Treated with Sorafenib: Role of IL-15Rα and NKG2D Triggering

28. Supplementary Figure 4 from Regulation of CD4+NKG2D+ Th1 Cells in Patients with Metastatic Melanoma Treated with Sorafenib: Role of IL-15Rα and NKG2D Triggering

29. Supplementary Figure 6 from Regulation of CD4+NKG2D+ Th1 Cells in Patients with Metastatic Melanoma Treated with Sorafenib: Role of IL-15Rα and NKG2D Triggering

30. Supplementary Figure 1 from Efficacy of Levo-1-Methyl Tryptophan and Dextro-1-Methyl Tryptophan in Reversing Indoleamine-2,3-Dioxygenase–Mediated Arrest of T-Cell Proliferation in Human Epithelial Ovarian Cancer

31. Supplementary Figure 5 from Regulation of CD4+NKG2D+ Th1 Cells in Patients with Metastatic Melanoma Treated with Sorafenib: Role of IL-15Rα and NKG2D Triggering

32. Supplementary Table 1 from Efficacy of Levo-1-Methyl Tryptophan and Dextro-1-Methyl Tryptophan in Reversing Indoleamine-2,3-Dioxygenase–Mediated Arrest of T-Cell Proliferation in Human Epithelial Ovarian Cancer

34. Supplementary Figure 4 from Efficacy of Levo-1-Methyl Tryptophan and Dextro-1-Methyl Tryptophan in Reversing Indoleamine-2,3-Dioxygenase–Mediated Arrest of T-Cell Proliferation in Human Epithelial Ovarian Cancer

35. Supplementary Figure 2 from Regulation of CD4+NKG2D+ Th1 Cells in Patients with Metastatic Melanoma Treated with Sorafenib: Role of IL-15Rα and NKG2D Triggering

37. Supplementary Figure 2 from Efficacy of Levo-1-Methyl Tryptophan and Dextro-1-Methyl Tryptophan in Reversing Indoleamine-2,3-Dioxygenase–Mediated Arrest of T-Cell Proliferation in Human Epithelial Ovarian Cancer

38. Supplementary Figure 3 from Efficacy of Levo-1-Methyl Tryptophan and Dextro-1-Methyl Tryptophan in Reversing Indoleamine-2,3-Dioxygenase–Mediated Arrest of T-Cell Proliferation in Human Epithelial Ovarian Cancer

40. Supplementary Materials, Legends for Figures 1-5 from Efficacy of Levo-1-Methyl Tryptophan and Dextro-1-Methyl Tryptophan in Reversing Indoleamine-2,3-Dioxygenase–Mediated Arrest of T-Cell Proliferation in Human Epithelial Ovarian Cancer

43. Distant antimetastatic effect of enterotropic colon cancer–derived α4β7+CD8+ T cells.

46. Circulating Exhausted PD-1+CD39+ Helper CD4 T Cells Are Tumor-Antigen-Specific and Predict Response to PD-1/PD-L1 Axis Blockade

47. Abstract 3203: Cutting edge biomarkers strategy to provide early insights into activity of EVT-801, a novel selective VEGFR-3 inhibitor that targets tumor angiogenesis during the FIH clinical trial

Catalog

Books, media, physical & digital resources