Lisa Mayr, Maria Trissal, Kallen Schwark, Jenna Labelle, Andrew Groves, Julia Furtner-Srajer, Jeffrey Supko, Liesa Weiler-Wichtl, Olivia Hack, Jacob Rozowsky, Joana G. Marques, Eshini Pandatharatna, Ulrike Leiss, Verena Rosenmayr, Frank Dubois, Noah F. Greenwald, Sibylle Madlener, Armin S. Guntner, Hana Pálová, Natalia Stepien, Daniela Lötsch-Gojo, Christian Dorfer, Karin Dieckmann, Andreas Peyrl, Amedeo A. Azizi, Alicia Baumgartner, Ondřej Slabý, Petra Pokorná, Pratiti Bandopadhayay, Rameen Beroukhim, Keith Ligon, Christof Kramm, Annika Bronsema, Simon Bailey, Ana Guerreiro Stücklin, Sabine Mueller, David T. Jones, Natalie Jäger, Jaroslav Štěrba, Leonhard Müllauer, Christine Haberler, Chandan Kumar-Sinha, Arul Chinnaiyan, Rajen Mody, Mary Skrypek, Nina Martinez, Daniel C. Bowers, Carl Koschmann, Johannes Gojo, and Mariella Filbin
PDGFRA has been shown to be commonly altered in high-grade gliomas (HGGs), including histone 3 lysine 27-mutated diffuse midline gliomas (H3K27M DMG), a disease with almost no long-term survivors. Here, we performed comprehensive genomic and transcriptomic analysis of 260 high-grade glioma cases, which revealed PDGFRA genomic alterations (mutations and/or amplifications) in 13% of patients. H3K27M DMGs had significantly higher PDGFRA expression compared to H3 wild-type tumors, and PDGFRA gene amplification resulted in even higher expression levels in H3K27M DMGs as well as H3 wild-type HGGs. We tested a panel of patient- derived pHGG/H3K27M DMG models against a range of PDGFRA inhibitors, including avapritinib, a potent small molecule inhibitor with relatively selective activity against both wild-type and mutant PDGFRA. Avapritinib showed supra-micromolar blood-brain barrier penetration in our pre-clinical models and demonstrated significant survival impact in an aggressive patient-derived H3K27M DMG mouse xenograft model. Finally, building on this preclinical activity, we report here the first clinical experience using avapritinib in eight pediatric and young adult patients with high-grade glioma (H3K27M DMG and/or PDGFRA altered). Avapritinib has thus far been well tolerated with no significant acute toxicities. Most importantly, our preliminary data reveal radiographic response evaluated by RAPNO criteria in 50% of patients, a striking outcome rarely seen in this patient population. In summary, we report that avapritinib is a selective, CNS-penetrant small molecule inhibitor of PDGFRA that shows potent activity in preclinical models and produces promising clinical responses with good tolerability in patients with high-grade glioma. This suggests a promising role for avapritinib therapy in this population with previously dismal outcomes. Citation Format: Lisa Mayr, Maria Trissal, Kallen Schwark, Jenna Labelle, Andrew Groves, Julia Furtner-Srajer, Jeffrey Supko, Liesa Weiler-Wichtl, Olivia Hack, Jacob Rozowsky, Joana G. Marques, Eshini Pandatharatna, Ulrike Leiss, Verena Rosenmayr, Frank Dubois, Noah F. Greenwald, Sibylle Madlener, Armin S. Guntner, Hana Pálová, Natalia Stepien, Daniela Lötsch-Gojo, Christian Dorfer, Karin Dieckmann, Andreas Peyrl, Amedeo A. Azizi, Alicia Baumgartner, Ondřej Slabý, Petra Pokorná, Pratiti Bandopadhayay, Rameen Beroukhim, Keith Ligon, Christof Kramm, Annika Bronsema, Simon Bailey, Ana Guerreiro Stücklin, Sabine Mueller, David T. Jones, Natalie Jäger, Jaroslav Štěrba, Leonhard Müllauer, Christine Haberler, Chandan Kumar-Sinha, Arul Chinnaiyan, Rajen Mody, Mary Skrypek, Nina Martinez, Daniel C. Bowers, Carl Koschmann, Johannes Gojo, Mariella Filbin. Clinical response to the PDGFRα inhibitor avapritinib in high-grade glioma patients. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5719.