6 results on '"2048 game"'
Search Results
2. Comparison of Expectimax and Monte Carlo algorithms in Solving the online 2048 game
- Author
-
Efrain Noa Yarasca and khoi Nguyen
- Subjects
2048 game ,Expectimax algorithm, Monte Carlo algorithm ,heuristics ,Industrial engineering. Management engineering ,T55.4-60.8 ,Mathematics ,QA1-939 - Abstract
In this work, two search algorithms Expectimax and Monte Carlo Tree Search (MCTS) were developed to solve the well-known “2048" puzzle online-game and compare their results. In both cases, five heuristics were employed to obtain favorable tile positions within the game. These heuristics were combined to maximize the game-score in all possible board positions. As a result, the game-score, the maximum value of tile obtained, and the computing time employed in solving the game are shown. In addition, the efficiency of each algorithm and its sub-cases are presented. This research concludes by arguing that Monte Carlo Tree Search was more efficient in higher score than Expectimax algorithm, although in a longer time. Increments in level of depth-search in Expectimax and number of moves in MCTS do not necessarily resulted in obtaining higher score.
- Published
- 2018
- Full Text
- View/download PDF
3. Igranje igre 2048 korištenjem neuronskih mreža
- Author
-
Orešković, Krešo and Đurasević, Marko
- Subjects
machine learning ,TECHNICAL SCIENCES. Computing ,TEHNIČKE ZNANOSTI. Računarstvo ,genetski algoritam ,neuronske mreže ,genetic algorithm ,2048 game ,igra 2048 ,neural networks ,strojno učenje - Abstract
Rad se fokusira na korištenje genetskog algoritma za treniranje neuronske mreže za igranje popularne igre 2048. Genetski algoritam koristi prirodnu selekciju, križanje i mutaciju kako bi generirao nove generacije mreža koje su sve bolje u igranju igre. Kroz iterativni proces, mreže uče strategije i pravila igre koje su potrebne za postizanje visokih bodova. Nakon što je mreža trenirana, testira se njezina sposobnost igranja igre i ocjenjuje se njezin uspjeh u usporedbi s drugim metodama igranja. Rezultati projekta pokazuju da genetski algoritam može biti uspješan u treniranju neuronske mreže za igranje 2048 igre. The project focuses on using a genetic algorithm to train a neural network to play the popular game 2048. The genetic algorithm employs natural selection, crossover, and mutation to generate new generations of networks that get progressively better at playing the game. Through an iterative process, the networks learn strategies and rules of the game that are necessary to achieve high scores. Once the network is trained, its ability to play the game is tested, and its performance is evaluated in comparison to other playing methods. The project's results demonstrate that the genetic algorithm can be successful in training a neural network to play the 2048 game.
- Published
- 2023
4. Using 2048-like games as a pedagogical tool for reinforcement learning.
- Author
-
Guei, Hung, Wei, Ting-Han, and Wu, I-Chen
- Subjects
- *
PUZZLES , *COMPUTER science , *REINFORCEMENT learning , *EDUCATION , *VIDEO games , *ALGORITHMS - Abstract
2048-like games are games that have similar properties with 2048, a single-player stochastic sliding puzzle game. 2048-like games are highly suitable for educational purposes due to 2048's relatively simple rules and its popularity. When using 2048-like games as a tool for machine learning education, these games have the additional benefit of being a well-known topic of research. Numerous machine learning methods have been proposed in the past for 2048, which provides a good opportunity for students to gain first-hand experience in applying these techniques. This paper summarizes the experience of using the game 2584, a 2048-like game, as a pedagogical tool for teaching reinforcement learning and computer game algorithms in 2017. 2584 is similar to 2048, with the only difference being the tiles values are Fibonacci numbers instead of powers of two. A two-player variant was designed to further teach adversarial game techniques. With a class of 33 undergraduate and graduate students, the average win rate for the single-player version of the 2584 reached 96%. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
5. Implementación en un robot de estrategias de resolución automática para el juego 2048
- Author
-
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Ruiz Vegas, Francisco Javier, García García, David, Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Ruiz Vegas, Francisco Javier, and García García, David
- Abstract
Este proyecto ha tenido como objetivo principal la construcción de un robot capaz de jugar autónomamente al conocido juego 2048. Se puede desglosar el trabajo en dos grandes partes: una de software y una de hardware. En lo que respecta a la primera, se ha realizado un análisis inicial de diversos aspectos del juego y se ha comparado distintos métodos de resolución, principalmente minimax, expectimax y redes neuronales. De todos estos métodos se han propuesto multitud de variantes en las que se han añadido diversas características como, por ejemplo, las distintas heurísticas para evaluar los nodos del árbol de búsqueda en los métodos minimax y expectimax o distintas arquitecturas en el caso de las redes neuronales. En cuanto al hardware, se ha construido un robot ideado para ser posicionado delante de la pantalla de un ordenador con el juego abierto e interaccionar con el ordenador, dando las órdenes de movimiento a través del puerto USB. El robot incorpora una placa Raspberry Pi 4, una placa Pro Micro ATmega32u4, una cámara y componentes de soporte, todo ello, dentro de una carcasa hecha a partir de modelado e impresión 3D., The main objective of this project was the construction of a robot capable of autonomously playing the well-known game 2048. The work has two main parts: software and hardware. Regarding the first, an initial analysis of various aspects of the game has been carried out and different resolution methods have been compared, mainly minimax, expectimax and neural networks. Many variants of all these methods have been proposed in which various features have been added, such as, for example, the different heuristics to evaluate the nodes of the search tree in the minimax and expectimax methods or different architectures in the case of neural networks. For the hardware, a robot has been built and designed to be positioned in front of a computer screen with the game open and interact with the computer, giving movement orders through the USB port. The robot incorporates a Raspberry Pi 4 board, a Pro Micro ATmega32u4 board, a camera and supporting components, all inside a 3D modelled and printed case.
- Published
- 2022
6. Implementación en un robot de estrategias de resolución automática para el juego 2048
- Author
-
García García, David, Ruiz Vegas, Francisco Javier, and Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
- Subjects
Modelado 3D ,Robot ,Raspberry Pi ,Robots autònoms ,Redes neuronales ,Árbol de búsqueda ,Tree search ,Neural network ,Teoría de juegos ,Juego 2048 ,Programación ,Image processing ,Autonomous robots ,2048 game ,Programming ,3D modelled ,Electrónica ,Electronics ,Jocs, Teoria de ,Procesado de imagen ,Informàtica::Robòtica [Àrees temàtiques de la UPC] ,Game theory - Abstract
Este proyecto ha tenido como objetivo principal la construcción de un robot capaz de jugar autónomamente al conocido juego 2048. Se puede desglosar el trabajo en dos grandes partes: una de software y una de hardware. En lo que respecta a la primera, se ha realizado un análisis inicial de diversos aspectos del juego y se ha comparado distintos métodos de resolución, principalmente minimax, expectimax y redes neuronales. De todos estos métodos se han propuesto multitud de variantes en las que se han añadido diversas características como, por ejemplo, las distintas heurísticas para evaluar los nodos del árbol de búsqueda en los métodos minimax y expectimax o distintas arquitecturas en el caso de las redes neuronales. En cuanto al hardware, se ha construido un robot ideado para ser posicionado delante de la pantalla de un ordenador con el juego abierto e interaccionar con el ordenador, dando las órdenes de movimiento a través del puerto USB. El robot incorpora una placa Raspberry Pi 4, una placa Pro Micro ATmega32u4, una cámara y componentes de soporte, todo ello, dentro de una carcasa hecha a partir de modelado e impresión 3D. The main objective of this project was the construction of a robot capable of autonomously playing the well-known game 2048. The work has two main parts: software and hardware. Regarding the first, an initial analysis of various aspects of the game has been carried out and different resolution methods have been compared, mainly minimax, expectimax and neural networks. Many variants of all these methods have been proposed in which various features have been added, such as, for example, the different heuristics to evaluate the nodes of the search tree in the minimax and expectimax methods or different architectures in the case of neural networks. For the hardware, a robot has been built and designed to be positioned in front of a computer screen with the game open and interact with the computer, giving movement orders through the USB port. The robot incorporates a Raspberry Pi 4 board, a Pro Micro ATmega32u4 board, a camera and supporting components, all inside a 3D modelled and printed case.
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.