We present a novel algorithm, an adaptive-lag smoother, approximating efficiently, in an online fashion, sequences of expectations under the marginal smoothing distributions in general state-space models. The algorithm evolves recursively a bank of estimators, one for each marginal, in resemblance with the so-called particle-based, rapid incremental smoother (PaRIS). Each estimator is propagated until a stopping criterion, measuring the fluctuations of the estimates, is met. The presented algorithm is furnished with theoretical results describing its asymptotic limit and memory usage. [ABSTRACT FROM AUTHOR]