1. Rainfall Similarity Search Based on Deep Learning by Using Precipitation Images
- Author
-
Yufeng Yu, Xingu He, Yuelong Zhu, and Dingsheng Wan
- Subjects
precipitation image ,feature extraction ,similarity analysis ,multivariate feature fusion ,Improved Particle Swarm Optimization ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Precipitation images play an important role in meteorological forecasting and flood forecasting, but how to characterize precipitation images and conduct rainfall similarity analysis is challenging and meaningful work. This paper proposes a rainfall similarity research method based on deep learning by using precipitation images. The algorithm first extracts regional precipitation, precipitation distribution, and precipitation center of the precipitation images and defines the similarity measures, respectively. Additionally, an ensemble weighting method of Normalized Discounted Cumulative Gain-Improved Particle Swarm Optimization (NDCG-IPSO) is proposed to weigh and fuse the three extracted features as the similarity measure of the precipitation image. During the experiment on similarity search for daily precipitation images in the Jialing River basin, the NDCG@10 of the search results reached 0.964, surpassing other methods. This indicates that the method proposed in this paper can better characterize the spatiotemporal characteristics of the precipitation image, thereby discovering similar rainfall processes and providing new ideas for hydrological forecasting.
- Published
- 2023
- Full Text
- View/download PDF