33 results on '"Wright FA"'
Search Results
2. Genetic variation in severe cystic fibrosis liver disease is associated with novel mechanisms for disease pathogenesis.
- Author
-
Stonebraker JR, Pace RG, Gallins PJ, Dang H, Aksit MA, Faino AV, Gordon WW, MacParland S, Bamshad MJ, Gibson RL, Cutting GR, Durie PR, Wright FA, Zhou YH, Blackman SM, O'Neal WK, Ling SC, and Knowles MR
- Subjects
- Humans, Female, Male, Adult, Severity of Illness Index, Liver Diseases genetics, Child, Adolescent, alpha 1-Antitrypsin genetics, Young Adult, Hypertension, Portal genetics, Whole Genome Sequencing, Cystic Fibrosis genetics, Cystic Fibrosis complications, Polymorphism, Single Nucleotide, Genome-Wide Association Study
- Abstract
Background and Aims: It is not known why severe cystic fibrosis (CF) liver disease (CFLD) with portal hypertension occurs in only ~7% of people with CF. We aimed to identify genetic modifiers for severe CFLD to improve understanding of disease mechanisms., Approach and Results: Whole-genome sequencing was available in 4082 people with CF with pancreatic insufficiency (n = 516 with severe CFLD; n = 3566 without CFLD). We tested ~15.9 million single nucleotide polymorphisms (SNPs) for association with severe CFLD versus no-CFLD, using pre-modulator clinical phenotypes including (1) genetic variant ( SERPINA1 ; Z allele) previously associated with severe CFLD; (2) candidate SNPs (n = 205) associated with non-CF liver diseases; (3) genome-wide association study of common/rare SNPs; (4) transcriptome-wide association; and (5) gene-level and pathway analyses. The Z allele was significantly associated with severe CFLD ( p = 1.1 × 10 -4 ). No significant candidate SNPs were identified. A genome-wide association study identified genome-wide significant SNPs in 2 loci and 2 suggestive loci. These 4 loci contained genes [significant, PKD1 ( p = 8.05 × 10 -10 ) and FNBP1 ( p = 4.74 × 10 -9 ); suggestive, DUSP6 ( p = 1.51 × 10 -7 ) and ANKUB1 ( p = 4.69 × 10 -7 )] relevant to severe CFLD pathophysiology. The transcriptome-wide association identified 3 genes [ CXCR1 ( p = 1.01 × 10 -6 ) , AAMP ( p = 1.07 × 10 -6 ), and TRBV24 ( p = 1.23 × 10 -5 )] involved in hepatic inflammation and innate immunity. Gene-ranked analyses identified pathways enriched in genes linked to multiple liver pathologies., Conclusion: These results identify loci/genes associated with severe CFLD that point to disease mechanisms involving hepatic fibrosis, inflammation, innate immune function, vascular pathology, intracellular signaling, actin cytoskeleton and tight junction integrity and mechanisms of hepatic steatosis and insulin resistance. These discoveries will facilitate mechanistic studies and the development of therapeutics for severe CFLD., (Copyright © 2024 American Association for the Study of Liver Diseases.)
- Published
- 2024
- Full Text
- View/download PDF
3. Two-Stage Machine Learning-Based Approach to Predict Points of Departure for Human Noncancer and Developmental/Reproductive Effects.
- Author
-
Kvasnicka J, Aurisano N, von Borries K, Lu EH, Fantke P, Jolliet O, Wright FA, and Chiu WA
- Subjects
- Humans, Risk Assessment, Machine Learning, Reproduction drug effects
- Abstract
Chemical points of departure (PODs) for critical health effects are crucial for evaluating and managing human health risks and impacts from exposure. However, PODs are unavailable for most chemicals in commerce due to a lack of in vivo toxicity data. We therefore developed a two-stage machine learning (ML) framework to predict human-equivalent PODs for oral exposure to organic chemicals based on chemical structure. Utilizing ML-based predictions for structural/physical/chemical/toxicological properties from OPERA 2.9 as features (Stage 1), ML models using random forest regression were trained with human-equivalent PODs derived from in vivo data sets for general noncancer effects ( n = 1,791) and reproductive/developmental effects ( n = 2,228), with robust cross-validation for feature selection and estimating generalization errors (Stage 2). These two-stage models accurately predicted PODs for both effect categories with cross-validation-based root-mean-squared errors less than an order of magnitude. We then applied one or both models to 34,046 chemicals expected to be in the environment, revealing several thousand chemicals of moderate concern and several hundred chemicals of high concern for health effects at estimated median population exposure levels. Further application can expand by orders of magnitude the coverage of organic chemicals that can be evaluated for their human health risks and impacts.
- Published
- 2024
- Full Text
- View/download PDF
4. Characterizing PFAS hazards and risks: a human population-based in vitro cardiotoxicity assessment strategy.
- Author
-
Ford LC, Lin HC, Zhou YH, Wright FA, Gombar VK, Sedykh A, Shah RR, Chiu WA, and Rusyn I
- Subjects
- Humans, Environmental Pollutants toxicity, Risk Assessment, Adult, Female, Male, Environmental Exposure adverse effects, Induced Pluripotent Stem Cells drug effects, Myocytes, Cardiac drug effects, Myocytes, Cardiac pathology, Cardiotoxicity etiology, Fluorocarbons toxicity
- Abstract
Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants of concern because of their wide use, persistence, and potential to be hazardous to both humans and the environment. Several PFAS have been designated as substances of concern; however, most PFAS in commerce lack toxicology and exposure data to evaluate their potential hazards and risks. Cardiotoxicity has been identified as a likely human health concern, and cell-based assays are the most sensible approach for screening and prioritization of PFAS. Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a widely used method to test for cardiotoxicity, and recent studies showed that many PFAS affect these cells. Because iPSC-derived cardiomyocytes are available from different donors, they also can be used to quantify human variability in responses to PFAS. The primary objective of this study was to characterize potential human cardiotoxic hazard, risk, and inter-individual variability in responses to PFAS. A total of 56 PFAS from different subclasses were tested in concentration-response using human iPSC-derived cardiomyocytes from 16 donors without known heart disease. Kinetic calcium flux and high-content imaging were used to evaluate biologically-relevant phenotypes such as beat frequency, repolarization, and cytotoxicity. Of the tested PFAS, 46 showed concentration-response effects in at least one phenotype and donor; however, a wide range of sensitivities were observed across donors. Inter-individual variability in the effects could be quantified for 19 PFAS, and risk characterization could be performed for 20 PFAS based on available exposure information. For most tested PFAS, toxicodynamic variability was within a factor of 10 and the margins of exposure were above 100. This study identified PFAS that may pose cardiotoxicity risk and have high inter-individual variability. It also demonstrated the feasibility of using a population-based human in vitro method to quantify population variability and identify cardiotoxicity risks of emerging contaminants., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
5. A Systematic Analysis of Read-Across Adaptations in Testing Proposal Evaluations by the European Chemicals Agency.
- Author
-
Roe HM, Tsai HD, Ball N, Wright FA, Chiu WA, and Rusyn I
- Abstract
An important element of the European Union's "Registration, Evaluation, Authorisation and Restriction of Chemicals" (REACH) regulation is the evaluation by the European Chemicals Agency (ECHA) of testing proposals submitted by the registrants to address data gaps in standard REACH information requirements. The registrants may propose adaptations, and ECHA evaluates the reasoning and issues a written decision. Read-across is a common adaptation type, yet it is widely assumed that ECHA often does not agree that the justifications are adequate to waive standard testing requirements. From 2008 to August 2023, a total of 2,630 Testing Proposals were submitted to ECHA; of these, 1,538 had published decisions that were systematically evaluated in this study. Each document was manually reviewed, and information extracted for further analyses. Read-across hypotheses were standardized into 17 assessment elements (AEs); each submission was classified as to the AEs relied upon by the registrants and by ECHA. Data was analyzed for patterns and associations. Testing Proposal Evaluations (TPEs) with adaptations comprised 23% (353) of the total; analogue (168) or group (136) read-across adaptations were most common. Of 304 read-across-containing TPEs, 49% were accepted; the odds of acceptance were significantly greater for group read-across submissions. The data was analyzed by Annex (i.e., tonnage), test guideline study, read-across hypothesis AEs, as well as target and source substance types and their structural similarity. While most ECHA decisions with both positive and negative decisions on whether the proposed read-across was adequate were context-specific, a number of significant associations were identified that influence the odds of acceptance. Overall, this analysis provides an unbiased overview of 15 years of experience with testing proposal-specific read-across adaptations by both registrants and ECHA. These data will inform future submissions as they identify most critical AEs to increase the odds of read-across acceptance., Competing Interests: Conflict of interest N. Ball is an employee of Dow Chemical Company that submitted several registrations and testing proposals for evaluation by ECHA. Other authors declare no conflicts of interest.
- Published
- 2024
- Full Text
- View/download PDF
6. Informing Hazard Identification and Risk Characterization of Environmental Chemicals by Combining Transcriptomic and Functional Data from Human-Induced Pluripotent Stem-Cell-Derived Cardiomyocytes.
- Author
-
Tsai HD, Ford LC, Burnett SD, Dickey AN, Wright FA, Chiu WA, and Rusyn I
- Subjects
- Humans, Environmental Pollutants toxicity, Dose-Response Relationship, Drug, Cells, Cultured, Myocytes, Cardiac drug effects, Myocytes, Cardiac metabolism, Myocytes, Cardiac cytology, Induced Pluripotent Stem Cells drug effects, Induced Pluripotent Stem Cells metabolism, Induced Pluripotent Stem Cells cytology, Transcriptome drug effects
- Abstract
Environmental chemicals may contribute to the global burden of cardiovascular disease, but experimental data are lacking to determine which substances pose the greatest risk. Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a high-throughput cardiotoxicity model that is widely used to test drugs and chemicals; however, most studies focus on exploring electro-physiological readouts. Gene expression data may provide additional molecular insights to be used for both mechanistic interpretation and dose-response analyses. Therefore, we hypothesized that both transcriptomic and functional data in human iPSC-derived cardiomyocytes may be used as a comprehensive screening tool to identify potential cardiotoxicity hazards and risks of the chemicals. To test this hypothesis, we performed concentration-response analysis of 464 chemicals from 12 classes, including both pharmaceuticals and nonpharmaceutical substances. Functional effects (beat frequency, QT prolongation, and asystole), cytotoxicity, and whole transcriptome response were evaluated. Points of departure were derived from phenotypic and transcriptomic data, and risk characterization was performed. Overall, 244 (53%) substances were active in at least one phenotype; as expected, pharmaceuticals with known cardiac liabilities were the most active. Positive chronotropy was the functional phenotype activated by the largest number of tested chemicals. No chemical class was particularly prone to pose a potential hazard to cardiomyocytes; a varying proportion (10-44%) of substances in each class had effects on cardiomyocytes. Transcriptomic data showed that 69 (15%) substances elicited significant gene expression changes; most perturbed pathways were highly relevant to known key characteristics of human cardiotoxicants. The bioactivity-to-exposure ratios showed that phenotypic- and transcriptomic-based POD led to similar results for risk characterization. Overall, our findings demonstrate how the integrative use of in vitro transcriptomic and phenotypic data from iPSC-derived cardiomyocytes not only offers a complementary approach for hazard and risk prioritization, but also enables mechanistic interpretation of the in vitro test results to increase confidence in decision-making.
- Published
- 2024
- Full Text
- View/download PDF
7. Control of false discoveries in grouped hypothesis testing for eQTL data.
- Author
-
Rudra P, Zhou YH, Nobel A, and Wright FA
- Subjects
- Computer Simulation, Bayes Theorem, Genotype, Quantitative Trait Loci, Genomics
- Abstract
Background: Expression quantitative trait locus (eQTL) analysis aims to detect the genetic variants that influence the expression of one or more genes. Gene-level eQTL testing forms a natural grouped-hypothesis testing strategy with clear biological importance. Methods to control family-wise error rate or false discovery rate for group testing have been proposed earlier, but may not be powerful or easily apply to eQTL data, for which certain structured alternatives may be defensible and may enable the researcher to avoid overly conservative approaches., Results: In an empirical Bayesian setting, we propose a new method to control the false discovery rate (FDR) for grouped hypotheses. Here, each gene forms a group, with SNPs annotated to the gene corresponding to individual hypotheses. The heterogeneity of effect sizes in different groups is considered by the introduction of a random effects component. Our method, entitled Random Effects model and testing procedure for Group-level FDR control (REG-FDR), assumes a model for alternative hypotheses for the eQTL data and controls the FDR by adaptive thresholding. As a convenient alternate approach, we also propose Z-REG-FDR, an approximate version of REG-FDR, that uses only Z-statistics of association between genotype and expression for each gene-SNP pair. The performance of Z-REG-FDR is evaluated using both simulated and real data. Simulations demonstrate that Z-REG-FDR performs similarly to REG-FDR, but with much improved computational speed., Conclusion: Our results demonstrate that the Z-REG-FDR method performs favorably compared to other methods in terms of statistical power and control of FDR. It can be of great practical use for grouped hypothesis testing for eQTL analysis or similar problems in statistical genomics due to its fast computation and ability to be fit using only summary data., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
8. Hazard and risk characterization of 56 structurally diverse PFAS using a targeted battery of broad coverage assays using six human cell types.
- Author
-
Ford LC, Lin HC, Tsai HD, Zhou YH, Wright FA, Sedykh A, Shah RR, Chiu WA, and Rusyn I
- Subjects
- Humans, Biological Monitoring, Induced Pluripotent Stem Cells, Fluorocarbons chemistry
- Abstract
Per- and poly-fluoroalkyl substances (PFAS) are extensively used in commerce leading to their prevalence in the environment. Due to their chemical stability, PFAS are considered to be persistent and bioaccumulative; they are frequently detected in both the environment and humans. Because of this, PFAS as a class (composed of hundreds to thousands of chemicals) are contaminants of very high concern. Little information is available for the vast majority of PFAS, and regulatory agencies lack safety data to determine whether exposure limits or restrictions are needed. Cell-based assays are a pragmatic approach to inform decision-makers on potential health hazards; therefore, we hypothesized that a targeted battery of human in vitro assays can be used to determine whether there are structure-bioactivity relationships for PFAS, and to characterize potential risks by comparing bioactivity (points of departure) to exposure estimates. We tested 56 PFAS from 8 structure-based subclasses in concentration response (0.1-100 μM) using six human cell types selected from target organs with suggested adverse effects of PFAS - human induced pluripotent stem cell (iPSC)-derived hepatocytes, neurons, and cardiomyocytes, primary human hepatocytes, endothelial and HepG2 cells. While many compounds were without effect; certain PFAS demonstrated cell-specific activity highlighting the necessity of using a compendium of in vitro models to identify potential hazards. No class-specific groupings were evident except for some chain length- and structure-related trends. In addition, margins of exposure (MOE) were derived using empirical and predicted exposure data. Conservative MOE calculations showed that most tested PFAS had a MOE in the 1-100 range; ∼20% of PFAS had MOE<1, providing tiered priorities for further studies. Overall, we show that a compendium of human cell-based models can be used to derive bioactivity estimates for a range of PFAS, enabling comparisons with human biomonitoring data. Furthermore, we emphasize that establishing structure-bioactivity relationships may be challenging for the tested PFAS., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper: Lucie C. Ford reports financial support was provided by Texas A&M University. Other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper, (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
9. Ten years of using key characteristics of human carcinogens to organize and evaluate mechanistic evidence in IARC Monographs on the identification of carcinogenic hazards to humans: Patterns and associations.
- Author
-
Rusyn I and Wright FA
- Subjects
- Humans, Animals, Carcinogenicity Tests, Risk Assessment, International Agencies, Carcinogens toxicity, Neoplasms chemically induced, Neoplasms epidemiology
- Abstract
Systematic review and evaluation of mechanistic evidence using the Key Characteristics approach was proposed by the International Agency for Research on Cancer (IARC) in 2012 and used by the IARC Monographs Working Groups since 2015. Key Characteristics are 10 features of agents known to cause cancer in humans. From 2015 to 2022, a total of 19 Monographs (73 agents combined) used Key Characteristics for cancer hazard classification. We hypothesized that a retrospective analysis of applications of the Key Characteristics approach to cancer hazard classification using heterogenous mechanistic data on diverse agents would be informative for systematic reviews in decision-making. We extracted information on the conclusions, data types, and the role mechanistic data played in the cancer hazard classification from each Monograph. Statistical analyses identified patterns in the use of Key Characteristics, as well as trends and correlations among Key Characteristics, data types, and ultimate decisions. Despite gaps in data for many agents and Key Characteristics, several significant results emerged. Mechanistic data from in vivo animal, in vitro animal, and in vitro human studies were most impactful in concluding that an agent could cause cancer via a Key Characteristic. To exclude the involvement of a Key Characteristic, data from large-scale systematic in vitro testing programs such as ToxCast, were most informative. Overall, increased availability of systemized data streams, such as human in vitro data, would provide the basis for more confident and informed conclusions about both positive and negative associations and inform expert judgments on cancer hazard., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
10. Risk-based prioritization of PFAS using phenotypic and transcriptomic data from human induced pluripotent stem cell-derived hepatocytes and cardiomyocytes.
- Author
-
Tsai HD, Ford LC, Chen Z, Dickey AN, Wright FA, and Rusyn I
- Subjects
- Humans, Environmental Pollutants toxicity, Risk Assessment, Animal Testing Alternatives, Hepatocytes drug effects, Hepatocytes metabolism, Myocytes, Cardiac drug effects, Myocytes, Cardiac metabolism, Induced Pluripotent Stem Cells drug effects, Induced Pluripotent Stem Cells metabolism, Fluorocarbons toxicity, Transcriptome drug effects, Phenotype
- Abstract
Per- and polyfluoroalkyl substances (PFAS) are chemicals with important applications; they are persistent in the environment and may pose human health hazards. Regulatory agencies are considering restrictions and bans of PFAS; however, little data exists for informed decisions. Several prioritization strategies were proposed for evaluation of potential hazards of PFAS. Structure-based grouping could expedite the selection of PFAS for testing; still, the hypothesis that structure-effect relationships exist for PFAS requires confirmation. We tested 26 structurally diverse PFAS from 8 groups using human induced pluripotent stem cell-derived hepatocytes and cardiomyocytes, and tested concentration-response effects on cell function and gene expression. Few phenotypic effects were observed in hepatocytes, but negative chronotropy was observed in cardiomyocytes for 8 PFAS. Substance- and cell type-dependent transcriptomic changes were more prominent but lacked substantial group-specific effects. In hepatocytes, we found upregulation of stress-related and extracellular matrix organization pathways, and down-regulation of fat metabolism. In cardiomyocytes, contractility-related pathways were most affected. We derived phenotypic and transcriptomic points of departure and compared them to predicted PFAS exposures. Conservative estimates for bioactivity and exposure were used to derive a bioactivity-to-exposure ratio (BER) for each PFAS; 23 of 26 PFAS had BER > 1. Overall, these data suggest that structure-based PFAS grouping may not be sufficient to predict their biological effects. Testing of individual PFAS may be needed for scientifically-supported decision-making. Our proposed strategy of using two human cell types and considering phenotypic and transcriptomic effects, combined with dose-response analysis and calculation of BER, may be used for PFAS prioritization.
- Published
- 2024
- Full Text
- View/download PDF
11. Application of Ion Mobility Spectrometry-Mass Spectrometry for Compositional Characterization and Fingerprinting of a Library of Diverse Crude Oil Samples.
- Author
-
Cordova AC, Dodds JN, Tsai HD, Lloyd DT, Roman-Hubers AT, Wright FA, Chiu WA, McDonald TJ, Zhu R, Newman G, and Rusyn I
- Subjects
- Ion Mobility Spectrometry, Mass Spectrometry, Gas Chromatography-Mass Spectrometry methods, Biomarkers, Petroleum analysis
- Abstract
Exposure characterization of crude oils, especially in time-sensitive circumstances such as spills and disasters, is a well-known analytical chemistry challenge. Gas chromatography-mass spectrometry is commonly used for "fingerprinting" and origin tracing in oil spills; however, this method is both time-consuming and lacks the resolving power to separate co-eluting compounds. Recent advances in methodologies to analyze petroleum substances using high-resolution analytical techniques have demonstrated both improved resolving power and higher throughput. One such method, ion mobility spectrometry-mass spectrometry (IMS-MS), is especially promising because it is both rapid and high-throughput, with the ability to discern among highly homologous hydrocarbon molecules. Previous applications of IMS-MS to crude oil analyses included a limited number of samples and did not provide detailed characterization of chemical constituents. We analyzed a diverse library of 195 crude oil samples using IMS-MS and applied a computational workflow to assign molecular formulas to individual features. The oils were from 12 groups based on geographical and geological origins: non-US (1 group), US onshore (3), and US Gulf of Mexico offshore (8). We hypothesized that information acquired through IMS-MS data would provide a more confident grouping and yield additional fingerprint information. Chemical composition data from IMS-MS was used for unsupervised hierarchical clustering, as well as machine learning-based supervised analysis to predict geographic and source rock categories for each sample; the latter also yielded several novel prospective biomarkers for fingerprinting of crude oils. We found that IMS-MS data have complementary advantages for fingerprinting and characterization of diverse crude oils and that proposed polycyclic aromatic hydrocarbon biomarkers can be used for rapid exposure characterization. Environ Toxicol Chem 2023;42:2336-2349. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC., (© 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.)
- Published
- 2023
- Full Text
- View/download PDF
12. Analysis of reproducibility and robustness of a renal proximal tubule microphysiological system OrganoPlate 3-lane 40 for in vitro studies of drug transport and toxicity.
- Author
-
Sakolish C, Moyer HL, Tsai HD, Ford LC, Dickey AN, Wright FA, Han G, Bajaj P, Baltazar MT, Carmichael PL, Stanko JP, Ferguson SS, and Rusyn I
- Subjects
- Humans, Reproducibility of Results, Prospective Studies, Kidney, Microphysiological Systems, Kidney Tubules, Proximal
- Abstract
Microphysiological systems are an emerging area of in vitro drug development, and their independent evaluation is important for wide adoption and use. The primary goal of this study was to test reproducibility and robustness of a renal proximal tubule microphysiological system, OrganoPlate 3-lane 40, as an in vitro model for drug transport and toxicity studies. This microfluidic model was compared with static multiwell cultures and tested using several human renal proximal tubule epithelial cell (RPTEC) types. The model was characterized in terms of the functional transport for various tubule-specific proteins, epithelial permeability of small molecules (cisplatin, tenofovir, and perfluorooctanoic acid) versus large molecules (fluorescent dextrans, 60-150 kDa), and gene expression response to a nephrotoxic xenobiotic. The advantages offered by OrganoPlate 3-lane 40 as compared with multiwell cultures are the presence of media flow, albeit intermittent, and increased throughput compared with other microfluidic models. However, OrganoPlate 3-lane 40 model appeared to offer only limited (eg, MRP-mediated transport) advantages in terms of either gene expression or functional transport when compared with the multiwell plate culture conditions. Although OrganoPlate 3-lane 40 can be used to study cellular uptake and direct toxic effects of small molecules, it may have limited utility for drug transport studies. Overall, this study offers refined experimental protocols and comprehensive comparative data on the function of RPETCs in traditional multiwell culture and microfluidic OrganoPlate 3-lane 40, information that will be invaluable for the prospective end-users of in vitro models of the human proximal tubule., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
13. Simultaneous modeling of multivariate heterogeneous responses and heteroskedasticity via a two-stage composite likelihood.
- Author
-
Ting BW, Wright FA, and Zhou YH
- Subjects
- Phenotype, Probability, Genome-Wide Association Study methods, Genomics methods
- Abstract
Multivariate heterogeneous responses and heteroskedasticity have attracted increasing attention in recent years. In genome-wide association studies, effective simultaneous modeling of multiple phenotypes would improve statistical power and interpretability. However, a flexible common modeling system for heterogeneous data types can pose computational difficulties. Here we build upon a previous method for multivariate probit estimation using a two-stage composite likelihood that exhibits favorable computational time while retaining attractive parameter estimation properties. We extend this approach to incorporate multivariate responses of heterogeneous data types (binary and continuous), and possible heteroskedasticity. Although the approach has wide applications, it would be particularly useful for genomics, precision medicine, or individual biomedical prediction. Using a genomics example, we explore statistical power and confirm that the approach performs well for hypothesis testing and coverage percentages under a wide variety of settings. The approach has the potential to better leverage genomics data and provide interpretable inference for pleiotropy, in which a locus is associated with multiple traits., (© 2023 The Authors. Biometrical Journal published by Wiley-VCH GmbH.)
- Published
- 2023
- Full Text
- View/download PDF
14. Ten Years of Using Key Characteristics of Human Carcinogens to Organize and Evaluate Mechanistic Evidence in IARC Monographs on the Identification of Carcinogenic Hazards to Humans: Patterns and Associations.
- Author
-
Rusyn I and Wright FA
- Abstract
Systematic review and evaluation of the mechanistic evidence only recently been instituted in cancer hazard identification step of decision-making. One example of organizing and evaluating mechanistic evidence is the Key Characteristics approach of the International Agency for Research on Cancer (IARC) Monographs on the Identification of Carcinogenic Hazards to Humans. The Key Characteristics of Human Carcinogens were proposed almost 10 years ago and have been used in every IARC Monograph since 2015. We investigated the patterns and associations in the use of Key Characteristics by the independent expert Working Groups. We examined 19 Monographs (2015-2022) that evaluated 73 agents. We extracted information on the conclusions by each Working Group on the strength of evidence for agent-Key Characteristic combinations, data types that were available for decisions, and the role mechanistic data played in the final cancer hazard classification. We conducted both descriptive and association analyses within and across data types. We found that IARC Working Groups were cautious when evaluating mechanistic evidence: for only ∼13% of the agents was strong evidence assigned for any Key Characteristic. Genotoxicity and cell proliferation were most data-rich, while little evidence was available for DNA repair and immortalization Key Characteristics. Analysis of the associations among Key Characteristics revealed that only chemical's metabolic activation was significantly co-occurring with genotoxicity and cell proliferation/death. Evidence from exposed humans was limited, while mechanistic evidence from rodent studies in vivo was often available. Only genotoxicity and cell proliferation/death were strongly associated with decisions on whether mechanistic data was impactful on the final cancer hazard classification. The practice of using the Key Characteristics approach is now well-established at IARC Monographs and other government agencies and the analyses presented herein will inform the future use of mechanistic evidence in regulatory decision-making.
- Published
- 2023
- Full Text
- View/download PDF
15. Integrative Chemical-Biological Grouping of Complex High Production Volume Substances from Lower Olefin Manufacturing Streams.
- Author
-
Cordova AC, Klaren WD, Ford LC, Grimm FA, Baker ES, Zhou YH, Wright FA, and Rusyn I
- Abstract
Human cell-based test methods can be used to evaluate potential hazards of mixtures and products of petroleum refining ("unknown or variable composition, complex reaction products, or biological materials" substances, UVCBs). Analyses of bioactivity and detailed chemical characterization of petroleum UVCBs were used separately for grouping these substances; a combination of the approaches has not been undertaken. Therefore, we used a case example of representative high production volume categories of petroleum UVCBs, 25 lower olefin substances from low benzene naphtha and resin oils categories, to determine whether existing manufacturing-based category grouping can be supported. We collected two types of data: nontarget ion mobility spectrometry-mass spectrometry of both neat substances and their organic extracts and in vitro bioactivity of the organic extracts in five human cell types: umbilical vein endothelial cells and induced pluripotent stem cell-derived hepatocytes, endothelial cells, neurons, and cardiomyocytes. We found that while similarity in composition and bioactivity can be observed for some substances, existing categories are largely heterogeneous. Strong relationships between composition and bioactivity were observed, and individual constituents that determine these associations were identified. Overall, this study showed a promising approach that combines chemical composition and bioactivity data to better characterize the variability within manufacturing categories of petroleum UVCBs.
- Published
- 2023
- Full Text
- View/download PDF
16. A tiered testing strategy based on in vitro phenotypic and transcriptomic data for selecting representative petroleum UVCBs for toxicity evaluation in vivo.
- Author
-
Tsai HD, House JS, Wright FA, Chiu WA, and Rusyn I
- Subjects
- Humans, Endothelial Cells, Gene Expression Profiling, Cell Line, Transcriptome, Petroleum toxicity
- Abstract
Hazard evaluation of substances of "unknown or variable composition, complex reaction products and biological materials" (UVCBs) remains a major challenge in regulatory science because their chemical composition is difficult to ascertain. Petroleum substances are representative UVCBs and human cell-based data have been previously used to substantiate their groupings for regulatory submissions. We hypothesized that a combination of phenotypic and transcriptomic data could be integrated to make decisions as to selection of group-representative worst-case petroleum UVCBs for subsequent toxicity evaluation in vivo. We used data obtained from 141 substances from 16 manufacturing categories previously tested in 6 human cell types (induced pluripotent stem cell [iPSC]-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, and MCF7 and A375 cell lines). Benchmark doses for gene-substance combinations were calculated, and both transcriptomic and phenotype-derived points of departure (PODs) were obtained. Correlation analysis and machine learning were used to assess associations between phenotypic and transcriptional PODs and to determine the most informative cell types and assays, thus representing a cost-effective integrated testing strategy. We found that 2 cell types-iPSC-derived-hepatocytes and -cardiomyocytes-contributed the most informative and protective PODs and may be used to inform selection of representative petroleum UVCBs for further toxicity evaluation in vivo. Overall, although the use of new approach methodologies to prioritize UVCBs has not been widely adopted, our study proposes a tiered testing strategy based on iPSC-derived hepatocytes and cardiomyocytes to inform selection of representative worst-case petroleum UVCBs from each manufacturing category for further toxicity evaluation in vivo., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
17. Genetic Modifiers of Cystic Fibrosis Lung Disease Severity: Whole-Genome Analysis of 7,840 Patients.
- Author
-
Zhou YH, Gallins PJ, Pace RG, Dang H, Aksit MA, Blue EE, Buckingham KJ, Collaco JM, Faino AV, Gordon WW, Hetrick KN, Ling H, Liu W, Onchiri FM, Pagel K, Pugh EW, Raraigh KS, Rosenfeld M, Sun Q, Wen J, Li Y, Corvol H, Strug LJ, Bamshad MJ, Blackman SM, Cutting GR, Gibson RL, O'Neal WK, Wright FA, and Knowles MR
- Subjects
- Humans, Genome-Wide Association Study methods, Cystic Fibrosis Transmembrane Conductance Regulator genetics, Patient Acuity, Lung, Microtubule-Associated Proteins genetics, Cystic Fibrosis genetics
- Abstract
Rationale: Lung disease is the major cause of morbidity and mortality in persons with cystic fibrosis (pwCF). Variability in CF lung disease has substantial non-CFTR (CF transmembrane conductance regulator) genetic influence. Identification of genetic modifiers has prognostic and therapeutic importance. Objectives: Identify genetic modifier loci and genes/pathways associated with pulmonary disease severity. Methods: Whole-genome sequencing data on 4,248 unique pwCF with pancreatic insufficiency and lung function measures were combined with imputed genotypes from an additional 3,592 patients with pancreatic insufficiency from the United States, Canada, and France. This report describes association of approximately 15.9 million SNPs using the quantitative Kulich normal residual mortality-adjusted (KNoRMA) lung disease phenotype in 7,840 pwCF using premodulator lung function data. Measurements and Main Results: Testing included common and rare SNPs, transcriptome-wide association, gene-level, and pathway analyses. Pathway analyses identified novel associations with genes that have key roles in organ development, and we hypothesize that these genes may relate to dysanapsis and/or variability in lung repair. Results confirmed and extended previous genome-wide association study findings. These whole-genome sequencing data provide finely mapped genetic information to support mechanistic studies. No novel primary associations with common single variants or rare variants were found. Multilocus effects at chr5p13 ( SLC9A3/CEP72 ) and chr11p13 ( EHF/APIP ) were identified. Variant effect size estimates at associated loci were consistently ordered across the cohorts, indicating possible age or birth cohort effects. Conclusions: This premodulator genomic, transcriptomic, and pathway association study of 7,840 pwCF will facilitate mechanistic and postmodulator genetic studies and the development of novel therapeutics for CF lung disease.
- Published
- 2023
- Full Text
- View/download PDF
18. MagicalRsq: Machine-learning-based genotype imputation quality calibration.
- Author
-
Sun Q, Yang Y, Rosen JD, Jiang MZ, Chen J, Liu W, Wen J, Raffield LM, Pace RG, Zhou YH, Wright FA, Blackman SM, Bamshad MJ, Gibson RL, Cutting GR, Knowles MR, Schrider DR, Fuchsberger C, and Li Y
- Subjects
- Humans, Calibration, Genotype, Machine Learning, Genome-Wide Association Study methods, Polymorphism, Single Nucleotide genetics
- Abstract
Whole-genome sequencing (WGS) is the gold standard for fully characterizing genetic variation but is still prohibitively expensive for large samples. To reduce costs, many studies sequence only a subset of individuals or genomic regions, and genotype imputation is used to infer genotypes for the remaining individuals or regions without sequencing data. However, not all variants can be well imputed, and the current state-of-the-art imputation quality metric, denoted as standard Rsq, is poorly calibrated for lower-frequency variants. Here, we propose MagicalRsq, a machine-learning-based method that integrates variant-level imputation and population genetics statistics, to provide a better calibrated imputation quality metric. Leveraging WGS data from the Cystic Fibrosis Genome Project (CFGP), and whole-exome sequence data from UK BioBank (UKB), we performed comprehensive experiments to evaluate the performance of MagicalRsq compared to standard Rsq for partially sequenced studies. We found that MagicalRsq aligns better with true R
2 than standard Rsq in almost every situation evaluated, for both European and African ancestry samples. For example, when applying models trained from 1,992 CFGP sequenced samples to an independent 3,103 samples with no sequencing but TOPMed imputation from array genotypes, MagicalRsq, compared to standard Rsq, achieved net gains of 1.4 million rare, 117k low-frequency, and 18k common variants, where net gains were gained numbers of correctly distinguished variants by MagicalRsq over standard Rsq. MagicalRsq can serve as an improved post-imputation quality metric and will benefit downstream analysis by better distinguishing well-imputed variants from those poorly imputed. MagicalRsq is freely available on GitHub., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
19. Pleiotropic modifiers of age-related diabetes and neonatal intestinal obstruction in cystic fibrosis.
- Author
-
Aksit MA, Ling H, Pace RG, Raraigh KS, Onchiri F, Faino AV, Pagel K, Pugh E, Stilp AM, Sun Q, Blue EE, Wright FA, Zhou YH, Bamshad MJ, Gibson RL, Knowles MR, Cutting GR, and Blackman SM
- Subjects
- Cystic Fibrosis Transmembrane Conductance Regulator genetics, Genome-Wide Association Study, Humans, Infant, Newborn, Cystic Fibrosis complications, Cystic Fibrosis genetics, Diabetes Mellitus genetics, Infant, Newborn, Diseases, Intestinal Obstruction complications, Intestinal Obstruction genetics
- Abstract
Individuals with cystic fibrosis (CF) develop complications of the gastrointestinal tract influenced by genetic variants outside of CFTR. Cystic fibrosis-related diabetes (CFRD) is a distinct form of diabetes with a variable age of onset that occurs frequently in individuals with CF, while meconium ileus (MI) is a severe neonatal intestinal obstruction affecting ∼20% of newborns with CF. CFRD and MI are slightly correlated traits with previous evidence of overlap in their genetic architectures. To better understand the genetic commonality between CFRD and MI, we used whole-genome-sequencing data from the CF Genome Project to perform genome-wide association. These analyses revealed variants at 11 loci (6 not previously identified) that associated with MI and at 12 loci (5 not previously identified) that associated with CFRD. Of these, variants at SLC26A9, CEBPB, and PRSS1 associated with both traits; variants at SLC26A9 and CEBPB increased risk for both traits, while variants at PRSS1, the higher-risk alleles for CFRD, conferred lower risk for MI. Furthermore, common and rare variants within the SLC26A9 locus associated with MI only or CFRD only. As expected, different loci modify risk of CFRD and MI; however, a subset exhibit pleiotropic effects indicating etiologic and mechanistic overlap between these two otherwise distinct complications of CF., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2022 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
20. A resource for integrated genomic analysis of the human liver.
- Author
-
Zhou YH, Gallins PJ, Etheridge AS, Jima D, Scholl E, Wright FA, and Innocenti F
- Subjects
- Bayes Theorem, Genomics, Humans, Liver, Polymorphism, Single Nucleotide, Genome-Wide Association Study methods, Quantitative Trait Loci
- Abstract
In this study, we generated whole-transcriptome RNA-Seq from n = 192 genotyped liver samples and used these data with existing data from the GTEx Project (RNA-Seq) and previous liver eQTL (microarray) studies to create an enhanced transcriptomic sequence resource in the human liver. Analyses of genotype-expression associations show pronounced enrichment of associations with genes of drug response. The associations are primarily consistent across the two RNA-Seq datasets, with some modest variation, indicating the importance of obtaining multiple datasets to produce a robust resource. We further used an empirical Bayesian model to compare eQTL patterns in liver and an additional 20 GTEx tissues, finding that MHC genes, and especially class II genes, are enriched for liver-specific eQTL patterns. To illustrate the utility of the resource to augment GWAS analysis with small sample sizes, we developed a novel meta-analysis technique to combine several liver eQTL data sources. We also illustrate its application using a transcriptome-enhanced re-analysis of a study of neutropenia in pancreatic cancer patients. The associations of genotype with liver expression, including splice variation and its genetic associations, are made available in a searchable genome browser., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
21. A Population-Based Human In Vitro Approach to Quantify Inter-Individual Variability in Responses to Chemical Mixtures.
- Author
-
Ford LC, Jang S, Chen Z, Zhou YH, Gallins PJ, Wright FA, Chiu WA, and Rusyn I
- Abstract
Human cell-based population-wide in vitro models have been proposed as a strategy to derive chemical-specific estimates of inter-individual variability; however, the utility of this approach has not yet been tested for cumulative exposures in mixtures. This study aimed to test defined mixtures and their individual components and determine whether adverse effects of the mixtures were likely to be more variable in a population than those of the individual chemicals. The in vitro model comprised 146 human lymphoblastoid cell lines from four diverse subpopulations of European and African descent. Cells were exposed, in concentration−response, to 42 chemicals from diverse classes of environmental pollutants; in addition, eight defined mixtures were prepared from these chemicals using several exposure- or hazard-based scenarios. Points of departure for cytotoxicity were derived using Bayesian concentration−response modeling and population variability was quantified in the form of a toxicodynamic variability factor (TDVF). We found that 28 chemicals and all mixtures exhibited concentration−response cytotoxicity, enabling calculation of the TDVF. The median TDVF across test substances, for both individual chemicals or defined mixtures, ranged from a default assumption (101/2) of toxicodynamic variability in human population to >10. The data also provide a proof of principle for single-variant genome-wide association mapping for toxicity of the chemicals and mixtures, although replication would be necessary due to statistical power limitations with the current sample size. This study demonstrates the feasibility of using a set of human lymphoblastoid cell lines as an in vitro model to quantify the extent of inter-individual variability in hazardous properties of both individual chemicals and mixtures. The data show that population variability of the mixtures is unlikely to exceed that of the most variable component, and that similarity in genome-wide associations among components may be used to accrue additional evidence for grouping of constituents in a mixture for cumulative assessments.
- Published
- 2022
- Full Text
- View/download PDF
22. TwinEQTL: ultrafast and powerful association analysis for eQTL and GWAS in twin studies.
- Author
-
Xia K, Shabalin AA, Yin Z, Chung W, Sullivan PF, Wright FA, Styner M, Gilmore JH, Santelli RC, and Zou F
- Subjects
- Humans, Gene Frequency, Linear Models, Quantitative Trait Loci, Genome-Wide Association Study methods, Polymorphism, Single Nucleotide
- Abstract
We develop a computationally efficient alternative, TwinEQTL, to a linear mixed-effects model for twin genome-wide association study data. Instead of analyzing all twin samples together with linear mixed-effects model, TwinEQTL first splits twin samples into 2 independent groups on which multiple linear regression analysis can be validly performed separately, followed by an appropriate meta-analysis-like approach to combine the 2 nonindependent test results. Through mathematical derivations, we prove the validity of TwinEQTL algorithm and show that the correlation between 2 dependent test statistics at each single-nucleotide polymorphism is independent of its minor allele frequency. Thus, the correlation is constant across all single-nucleotide polymorphisms. Through simulations, we show empirically that TwinEQTL has well controlled type I error with negligible power loss compared with the gold-standard linear mixed-effects models. To accommodate expression quantitative loci analysis with twin subjects, we further implement TwinEQTL into an R package with much improved computational efficiency. Our approaches provide a significant leap in terms of computing speed for genome-wide association study and expression quantitative loci analysis with twin samples., (© The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
23. Model systems and organisms for addressing inter- and intra-species variability in risk assessment.
- Author
-
Rusyn I, Chiu WA, and Wright FA
- Subjects
- Animals, Mice, Risk Assessment, Toxicokinetics, Uncertainty, Models, Theoretical
- Abstract
Addressing inter- and intra-species differences in potential hazardous effects of chemicals remains a long-standing challenge in human health risk assessment that is typically addressed heuristically through use of 10-fold default "uncertainty" or "safety" factors. Although it has long been recognized that chemical-specific data would be preferable to replace the "defaults," only recently have there emerged experimental model systems and organisms with the potential to experimentally quantify the population variability in both toxicokinetics and toxicodynamics for specific chemicals. Progress is most evident in the use of population in vitro human cell-based models and population in vivo mouse models. Multiple case studies were published in the past 10-15 years that clearly demonstrate the utility of such models to derive data with direct application to quantifying variability at hazard identification, exposure-response assessment, and mechanistic understanding of toxicity steps of traditional risk assessments. Here, we review recent efforts to develop fit-for-purpose approaches utilizing these novel population-based in vitro and in vivo models in the context of risk assessment. We also describe key challenges and opportunities to broadening application of population-based experimental approaches. We conclude that population-based models are now beginning to realize their potential to address long-standing data gaps in inter- and intra-species variability., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
24. Characterization of population variability of 1,3-butadiene derived protein adducts in humans and mice.
- Author
-
Boysen G, Rusyn I, Chiu WA, and Wright FA
- Subjects
- Animals, Biomarkers, Hemoglobins metabolism, Humans, Mice, Butadienes chemistry, Butadienes metabolism, Butadienes toxicity, Carcinogens metabolism, Carcinogens toxicity
- Abstract
1,3-butadiene is a known human carcinogen and a chemical to which humans are exposed occupationally and through environmental pollution. Inhalation risk assessment of 1,3-butadiene was completed several decades ago before data on molecular biomarkers of exposure and effect have been reported from both human studies of workers and experimental studies in mice. To improve risk assessment of 1,3-butadiene, the quantitative characterization of uncertainty in estimations of inter-individual variability in cancer-related effects is needed. For this, we ought to take advantage of the availability of the data on 1,3-butadiene hemoglobin adducts, well established biomarkers of the internal dose of the reactive epoxides, from several large-scale human studies and from a study in a Collaborative Cross mouse population. We found that in humans, toxicokinetic uncertainty factor for 99th percentile of the population ranged from 3.27 to 7.9, depending on the hemoglobin adduct. For mice, these values ranged from less than 2 to 7.51, depending on the dose and the adduct. Quantitative estimated from this study can be used to reduce uncertainties in the parameter estimates used in the models to derive the inhalation unit risk, as well as to address possible differences in variability in 1,3-butadiene metabolism that may be dose-related., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
25. Rethinking Blood Testing in Pediatric Cancer Patients: A Quality Improvement Approach.
- Author
-
Grant AM, Wright FA, Chapman LRM, Cook E, Byrne R, and O'Brien TA
- Abstract
Introduction: The overuse of blood tests burdens the healthcare system and can detrimentally impact patient care. Risks of frequent blood sampling include infection and clinician-induced anemia, which can negatively impact patients and their families. Pediatric cancer patients are particularly vulnerable as they are immunocompromised with a small blood volume. Four blood tests had become a daily practice. Therefore, we aimed to reduce the number of blood tests taken per bed day within the inpatient pediatric cancer unit by 15% within 8 months., Methods: This quality improvement project combined several strategies to reduce test frequency and empower clinicians on the rationale for blood test ordering. Recommendations were developed collaboratively presented in a summary table. Targeted behavior-change methodology built engagement and momentum for the change. All clinicians were challenged to STOP and THINK about why a test is necessary for each patient. The primary outcome measure was the frequency of the tests taken per bed day. Frequency was compared between pre- and postimplementation plus follow-up periods across 2019-2021., Results: 26,941 blood tests were captured in 1,558 admissions. The intervention led to an overall blood test reduction of 37% over 8 months. Liver Function Tests were the standout, with a 52% decrease in test frequency., Conclusions: A strategy incorporating education and culture change, combined with clear guidance on testing frequency, significantly reduced the ordering frequency of blood tests without increased patient harm., (Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.)
- Published
- 2022
- Full Text
- View/download PDF
26. Characterization of Compositional Variability in Petroleum Substances.
- Author
-
Roman-Hubers AT, Cordova AC, Rohde AM, Chiu WA, McDonald TJ, Wright FA, Dodds JN, Baker ES, and Rusyn I
- Abstract
In the process of registration of substances of Unknown or Variable Composition, Complex Reaction Products or Biological Materials (UVCBs), information sufficient to enable substance identification must be provided. Substance identification for UVCBs formed through petroleum refining is particularly challenging due to their chemical complexity, as well as variability in refining process conditions and composition of the feedstocks. This study aimed to characterize compositional variability of petroleum UVCBs both within and across product categories. We utilized ion mobility spectrometry (IMS)-MS as a technique to evaluate detailed chemical composition of independent production cycle-derived samples of 6 petroleum products from 3 manufacturing categories (heavy aromatic, hydrotreated light paraffinic, and hydrotreated heavy paraffinic). Atmospheric pressure photoionization and drift tube IMS-MS were used to identify structurally related compounds and quantified between- and within-product variability. In addition, we determined both individual molecules and hydrocarbon blocks that were most variable in samples from different production cycles. We found that detailed chemical compositional data on petroleum UVCBs obtained from IMS-MS can provide the information necessary for hazard and risk characterization in terms of quantifying the variability of the products in a manufacturing category, as well as in subsequent production cycles of the same product., Competing Interests: Declaration of interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
- Published
- 2022
- Full Text
- View/download PDF
27. Spatial and Temporal Analysis of Impacts of Hurricane Florence on Criteria Air Pollutants and Air Toxics in Eastern North Carolina.
- Author
-
Bhandari S, Casillas G, Aly NA, Zhu R, Newman G, Wright FA, Miller A, Adler G, Rusyn I, and Chiu WA
- Subjects
- Environmental Monitoring, North Carolina, Vehicle Emissions analysis, Air Pollutants analysis, Air Pollution analysis, Cyclonic Storms
- Abstract
Natural and anthropogenic disasters are associated with air quality concerns due to the potential redistribution of pollutants in the environment. Our objective was to conduct a spatiotemporal analysis of air concentrations of benzene, toluene, ethylbenzne, and xylene (BTEX) and criteria air pollutants in North Carolina during and after Hurricane Florence. Three sampling campaigns were carried out immediately after the storm (September 2018) and at four-month intervals. BTEX were measured along major roads. Concurrent criteria air pollutant concentrations were predicted from modeling. Correlation between air pollutants and possible point sources was conducted using spatial regression. Exceedances of ambient air criteria were observed for benzene (in all sampling periods) and PM2.5 (mostly immediately after Florence). For both, there was an association between higher concentrations and fueling stations, particularly immediately after Florence. For other pollutants, concentrations were generally below levels of regulatory concern. Through characterization of air quality under both disaster and "normal" conditions, this study demonstrates spatial and temporal variation in air pollutants. We found that only benzene and PM2.5 were present at levels of potential concern, and there were localized increases immediately after the hurricane. These substances warrant particular attention in future disaster response research (DR2) investigations.
- Published
- 2022
- Full Text
- View/download PDF
28. Rationalised premedication practice for blood product transfusions: A single-centre quality initiative.
- Author
-
Grant AM, Wright FA, and O'Brien TA
- Subjects
- Child, Humans, Pharmaceutical Preparations, Platelet Transfusion, Premedication, Blood Transfusion, Transfusion Reaction prevention & control
- Abstract
Aim: Blood and platelets are scarce resources that are an essential part of the supportive care for paediatric cancer patients. There are many inherent risks involved with transfusions including acute transfusion reactions (ATRs). Following an initial ATR, prophylactic medications are commonly given prior to subsequent transfusions. However, there are risks with medication administration as well as negative implications for the health system. Our aim was to prevent the automatic prescribing of premedications prior to blood and platelet transfusions for ATRs. We hypothesised this would not increase the risk of harm., Methods: Our intervention was to eliminate automatic prescribing of intravenous corticosteroids and intravenous promethazine prior to a transfusion. This was approached through a behaviour change model and the implementation of recommended prescribing guidelines. Three Plan Do Study Act (PDSA) cycles refined the guidelines to align with clinicians' needs and build support through co-design. Data gathered on individual patients receiving transfusions and reaction rates during the trial were compared to international data., Results: A total of 100 patients received a transfusion during the trial. Eleven patients either had a previous reaction or experienced their first reaction during this time. All patients followed the guidelines and had either no premedication or an oral antihistamine premedication. There were no breakthrough reactions using oral antihistamines. The overall reaction rate was 1.33%, which aligns with the reported data on ATRs internationally., Conclusion: A restricted prescribing approach to pharmaceutical cover prior to blood and platelet transfusions can be implemented effectively in a paediatric cancer population, without an increase in the risk of harm to the patients., (© 2021 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).)
- Published
- 2022
- Full Text
- View/download PDF
29. Leveraging TOPMed imputation server and constructing a cohort-specific imputation reference panel to enhance genotype imputation among cystic fibrosis patients.
- Author
-
Sun Q, Liu W, Rosen JD, Huang L, Pace RG, Dang H, Gallins PJ, Blue EE, Ling H, Corvol H, Strug LJ, Bamshad MJ, Gibson RL, Pugh EW, Blackman SM, Cutting GR, O'Neal WK, Zhou YH, Wright FA, Knowles MR, Wen J, and Li Y
- Abstract
Cystic fibrosis (CF) is a severe genetic disorder that can cause multiple comorbidities affecting the lungs, the pancreas, the luminal digestive system and beyond. In our previous genome-wide association studies (GWAS), we genotyped approximately 8,000 CF samples using a mixture of different genotyping platforms. More recently, the Cystic Fibrosis Genome Project (CFGP) performed deep (approximately 30×) whole genome sequencing (WGS) of 5,095 samples to better understand the genetic mechanisms underlying clinical heterogeneity among patients with CF. For mixtures of GWAS array and WGS data, genotype imputation has proven effective in increasing effective sample size. Therefore, we first performed imputation for the approximately 8,000 CF samples with GWAS array genotype using the Trans-Omics for Precision Medicine (TOPMed) freeze 8 reference panel. Our results demonstrate that TOPMed can provide high-quality imputation for patients with CF, boosting genomic coverage from approximately 0.3-4.2 million genotyped markers to approximately 11-43 million well-imputed markers, and significantly improving polygenic risk score (PRS) prediction accuracy. Furthermore, we built a CF-specific CFGP reference panel based on WGS data of patients with CF. We demonstrate that despite having approximately 3% the sample size of TOPMed, our CFGP reference panel can still outperform TOPMed when imputing some CF disease-causing variants, likely owing to allele and haplotype differences between patients with CF and general populations. We anticipate our imputed data for 4,656 samples without WGS data will benefit our subsequent genetic association studies, and the CFGP reference panel built from CF WGS samples will benefit other investigators studying CF., Competing Interests: M.J.B. is the Editor-in-chief of HGG Advances. All other authors declare no competing interests., (© 2022 The Authors.)
- Published
- 2022
- Full Text
- View/download PDF
30. Grouping of UVCB substances with dose-response transcriptomics data from human cell-based assays.
- Author
-
House JS, Grimm FA, Klaren WD, Dalzell A, Kuchi S, Zhang SD, Lenz K, Boogaard PJ, Ketelslegers HB, Gant TW, Rusyn I, and Wright FA
- Subjects
- Biological Assay, Endothelial Cells, Humans, Transcriptome, Induced Pluripotent Stem Cells, Petroleum
- Abstract
The application of in vitro biological assays as new approach methodologies (NAMs) to support grouping of UVCB (unknown or variable composition, complex reaction products, and biological materials) substances has recently been demonstrated. In addition to cell-based phenotyping as NAMs, in vitro transcriptomic profiling is used to gain deeper mechanistic understanding of biological responses to chemicals and to support grouping and read-across. However, the value of gene expression profiling for characterizing complex substances like UVCBs has not been explored. Using 141 petroleum substance extracts, we performed dose-response transcriptomic profiling in human induced pluripotent stem cell (iPSC)-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, as well as cell lines MCF7 and A375. The goal was to determine whether transcriptomic data can be used to group these UVCBs and to further characterize the molecular basis for in vitro biological responses. We found distinct transcriptional responses for petroleum substances by manufacturing class. Pathway enrichment informed interpretation of effects of substances and UVCB petroleum-class. Transcriptional activity was strongly correlated with concentration of polycyclic aromatic compounds (PAC), especially in iPSC-derived hepatocytes. Supervised analysis using transcriptomics, alone or in combination with bioactivity data collected on these same substances/cells, suggest that transcriptomics data provide useful mechanistic information, but only modest additional value for grouping. Overall, these results further demonstrate the value of NAMs for grouping of UVCBs, identify informative cell lines, and provide data that could be used for justifying selection of substances for further testing that may be required for registration.
- Published
- 2022
- Full Text
- View/download PDF
31. Potential Human Health Hazard of Post-Hurricane Harvey Sediments in Galveston Bay and Houston Ship Channel: A Case Study of Using In Vitro Bioactivity Data to Inform Risk Management Decisions.
- Author
-
Chen Z, Jang S, Kaihatu JM, Zhou YH, Wright FA, Chiu WA, and Rusyn I
- Subjects
- Bays, Environmental Monitoring, Geologic Sediments, Humans, Risk Management, Cyclonic Storms, Disasters, Polycyclic Aromatic Hydrocarbons analysis, Water Pollutants, Chemical analysis, Water Pollutants, Chemical toxicity
- Abstract
Natural and anthropogenic disasters may be associated with redistribution of chemical contaminants in the environment; however, current methods for assessing hazards and risks of complex mixtures are not suitable for disaster response. This study investigated the suitability of in vitro toxicity testing methods as a rapid means of identifying areas of potential human health concern. We used sediment samples (n = 46) from Galveston Bay and the Houston Ship Channel (GB/HSC) areas after hurricane Harvey, a disaster event that led to broad redistribution of chemically-contaminated sediments, including deposition of the sediment on shore due to flooding. Samples were extracted with cyclohexane and dimethyl sulfoxide and screened in a compendium of human primary or induced pluripotent stem cell (iPSC)-derived cell lines from different tissues (hepatocytes, neuronal, cardiomyocytes, and endothelial) to test for concentration-dependent effects on various functional and cytotoxicity phenotypes (n = 34). Bioactivity data were used to map areas of potential concern and the results compared to the data on concentrations of polycyclic aromatic hydrocarbons (PAHs) in the same samples. We found that setting remediation goals based on reducing bioactivity is protective of both "known" risks associated with PAHs and "unknown" risks associated with bioactivity, but the converse was not true for remediation based on PAH risks alone. Overall, we found that in vitro bioactivity can be used as a comprehensive indicator of potential hazards and is an example of a new approach method (NAM) to inform risk management decisions on site cleanup.
- Published
- 2021
- Full Text
- View/download PDF
32. Associations between the composition of functional tooth units and nutrient intake in older men: the Concord Health and Ageing in Men Project.
- Author
-
Milledge K, Cumming RG, Wright FA, Naganathan V, Blyth FM, Le Couteur DG, Waite LM, Handelsman DJ, and Hirani V
- Subjects
- Aged, Aging, Cross-Sectional Studies, Diet, Humans, Male, Micronutrients, Eating, Energy Intake
- Abstract
Objective: Inadequate nutrient intakes have been linked with poor dentition in older adults. The aim of this study was to investigate the associations between the composition of functional tooth units (FTU) and nutrient intakes in older men., Design: A cross-sectional study with a standardised validated diet history assessment and comprehensive oral health assessments. FTU were categorised by dentition type: (i) Group A (Natural FTU Only), (ii) Group B (Natural and Replaced FTU) and (iii) Group C (No Natural FTU). Attainment of nutrient reference values (NRV) for sixteen micronutrients was incorporated into a micronutrient risk variable, dichotomised 'good' (≥ 12) or 'poor' (≤ 11), and for seven macronutrients into a macronutrient risk variable, dichotomised 'good' (≥ 5) or 'poor' (≤ 4)., Setting: Subjects selected from the local Sydney geographical areas., Participants: Community-dwelling older men (n 608)., Results: 32 % (n 197) of participants were categorised as Group A, 27 % (n 167) as Group B and 40 % (n 244) as Group C. In adjusted logistic regression analysis, being in Group C, compared with Group A, was associated with intakes below NRV recommendations for fibre (OR: 2·30, 95 % CI 1·30, 4·05). Adjusted analysis also showed that men in Group C, compared with Group A, were more likely to have poor intake of macronutrients (OR: 2·00, 95 % CI 1·01, 3·94)., Conclusions: Our study shows statistically significant associations between the composition of FTU and poor macronutrient intakes. Maintaining natural pairs of occluding FTU may be important for attaining adequate nutrient intakes in older men.
- Published
- 2021
- Full Text
- View/download PDF
33. Intra- and Inter-Species Variability in Urinary N7-(1-Hydroxy-3-buten-2-yl)guanine Adducts Following Inhalation Exposure to 1,3-Butadiene.
- Author
-
Erber L, Goodman S, Wright FA, Chiu WA, Tretyakova NY, and Rusyn I
- Subjects
- Animals, Butadienes administration & dosage, Butadienes metabolism, Chromatography, Liquid, DNA Adducts administration & dosage, DNA Adducts metabolism, Female, Inhalation Exposure, Male, Mice, Mice, Inbred Strains, Nanotechnology, Spectrometry, Mass, Electrospray Ionization, Butadienes urine, DNA Adducts urine
- Abstract
1,3-Butadiene is a known carcinogen primarily targeting lymphoid tissues, lung, and liver. Cytochrome P450 activates butadiene to epoxides which form covalent DNA adducts that are thought to be a key mechanistic event in cancer. Previous studies suggested that inter-species, -tissue, and -individual susceptibility to adverse health effects of butadiene exposure may be due to differences in metabolism and other mechanisms. In this study, we aimed to examine the extent of inter-individual and inter-species variability in the urinary N7-(1-hydroxy-3-buten-2-yl)guanine (EB-GII) DNA adduct, a well-known biomarker of exposure to butadiene. For a population variability study in mice, we used the collaborative cross model. Female and male mice from five strains were exposed to filtered air or butadiene (590 ppm, 6 h/day, 5 days/week for 2 weeks) by inhalation. Urine samples were collected, and the metabolic activation of butadiene by DNA-reactive species was quantified as urinary EB-GII adducts. We quantified the degree of EB-GII variation across mouse strains and sexes; then, we compared this variation with the data from rats (exposed to 62.5 or 200 ppm butadiene) and humans (0.004-2.2 ppm butadiene). We show that sex and strain are significant contributors to the variability in urinary EB-GII levels in mice. In addition, we find that the degree of variability in urinary EB-GII in collaborative cross mice, when expressed as an uncertainty factor for the inter-individual variability (UF
H ), is relatively modest (≤threefold) possibly due to metabolic saturation. By contrast, the variability in urinary EB-GII (adjusted for exposure) observed in humans, while larger than the default value of 10-fold, is largely consistent with UFH estimates for other chemicals based on human data for non-cancer endpoints. Overall, these data demonstrate that urinary EB-GII levels, particularly from human studies, may be useful for quantitative characterization of human variability in cancer risks to butadiene.- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.