34 results on '"Wright, Ij"'
Search Results
2. The AusTraits plant dictionary.
- Author
-
Wenk, EH, Sauquet, H, Gallagher, RV, Brownlee, R, Boettiger, C, Coleman, D, Yang, S, Auld, T, Barrett, R, Brodribb, T, Choat, B, Dun, L, Ellsworth, D, Gosper, C, Guja, L, Jordan, GJ, Le Breton, T, Leigh, A, Lu-Irving, P, Medlyn, B, Nolan, R, Ooi, M, Sommerville, KD, Vesk, P, White, M, Wright, IJ, Falster, DS, Wenk, EH, Sauquet, H, Gallagher, RV, Brownlee, R, Boettiger, C, Coleman, D, Yang, S, Auld, T, Barrett, R, Brodribb, T, Choat, B, Dun, L, Ellsworth, D, Gosper, C, Guja, L, Jordan, GJ, Le Breton, T, Leigh, A, Lu-Irving, P, Medlyn, B, Nolan, R, Ooi, M, Sommerville, KD, Vesk, P, White, M, Wright, IJ, and Falster, DS
- Abstract
Traits with intuitive names, a clear scope and explicit description are essential for all trait databases. The lack of unified, comprehensive, and machine-readable plant trait definitions limits the utility of trait databases, including reanalysis of data from a single database, or analyses that integrate data across multiple databases. Both can only occur if researchers are confident the trait concepts are consistent within and across sources. Here we describe the AusTraits Plant Dictionary (APD), a new data source of terms that extends the trait definitions included in a recent trait database, AusTraits. The development process of the APD included three steps: review and formalisation of the scope of each trait and the accompanying trait description; addition of trait metadata; and publication in both human and machine-readable forms. Trait definitions include keywords, references, and links to related trait concepts in other databases, enabling integration of AusTraits with other sources. The APD will both improve the usability of AusTraits and foster the integration of trait data across global and regional plant trait databases.
- Published
- 2024
3. High exposure of global tree diversity to human pressure
- Author
-
Guo, W-Y, Serra-Diaz, JM, Schrodt, F, Eiserhardt, WL, Maitner, BS, Merow, C, Violle, C, Anand, M, Belluau, M, Bruun, HH, Byun, C, Catford, JA, Cerabolini, BEL, Chacon-Madrigal, E, Ciccarelli, D, Cornelissen, JHC, Dang-Le, AT, de Frutos, A, Dias, AS, Giroldo, AB, Guo, K, Gutierrez, AG, Hattingh, W, He, T, Hietz, P, Hough-Snee, N, Jansen, S, Kattge, J, Klein, T, Komac, B, Kraft, NJB, Kramer, K, Lavorel, S, Lusk, CH, Martin, AR, Mencuccini, M, Michaletz, ST, Minden, V, Mori, AS, Niinemets, U, Onoda, Y, Penuelas, J, Pillar, VD, Pisek, J, Robroek, BJM, Schamp, B, Slot, M, Sosinski, EE, Soudzilovskaia, NA, Thiffault, N, van Bodegom, P, van der Plas, F, Wright, IJ, Xu, W-B, Zheng, J, Enquist, BJ, Svenning, J-C, Guo, W-Y, Serra-Diaz, JM, Schrodt, F, Eiserhardt, WL, Maitner, BS, Merow, C, Violle, C, Anand, M, Belluau, M, Bruun, HH, Byun, C, Catford, JA, Cerabolini, BEL, Chacon-Madrigal, E, Ciccarelli, D, Cornelissen, JHC, Dang-Le, AT, de Frutos, A, Dias, AS, Giroldo, AB, Guo, K, Gutierrez, AG, Hattingh, W, He, T, Hietz, P, Hough-Snee, N, Jansen, S, Kattge, J, Klein, T, Komac, B, Kraft, NJB, Kramer, K, Lavorel, S, Lusk, CH, Martin, AR, Mencuccini, M, Michaletz, ST, Minden, V, Mori, AS, Niinemets, U, Onoda, Y, Penuelas, J, Pillar, VD, Pisek, J, Robroek, BJM, Schamp, B, Slot, M, Sosinski, EE, Soudzilovskaia, NA, Thiffault, N, van Bodegom, P, van der Plas, F, Wright, IJ, Xu, W-B, Zheng, J, Enquist, BJ, and Svenning, J-C
- Abstract
Safeguarding Earth's tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions. We also assess the effectiveness of several influential proposed conservation prioritization frameworks to protect the top 17% and top 50% of tree priority areas. We find that an average of 50.2% of a tree species' range occurs in 110-km grid cells without any protected areas (PAs), with 6,377 small-range tree species fully unprotected, and that 83% of tree species experience nonnegligible human pressure across their range on average. Protecting high-priority areas for the top 17% and 50% priority thresholds would increase the average protected proportion of each tree species' range to 65.5% and 82.6%, respectively, leaving many fewer species (2,151 and 2,010) completely unprotected. The priority areas identified for trees match well to the Global 200 Ecoregions framework, revealing that priority areas for trees would in large part also optimize protection for terrestrial biodiversity overall. Based on range estimates for >46,000 tree species, our findings show that a large proportion of tree species receive limited protection by current PAs and are under substantial human pressure. Improved protection of biodiversity overall would also strongly benefit global tree diversity.
- Published
- 2022
4. The global spectrum of plant form and function: enhanced species-level trait dataset
- Author
-
Sandra Díaz, Jens Kattge, Johannes H. C. Cornelissen, Ian J. Wright, Sandra Lavorel, Stéphane Dray, Björn Reu, Michael Kleyer, Christian Wirth, I. Colin Prentice, Eric Garnier, Gerhard Bönisch, Mark Westoby, Hendrik Poorter, Peter B. Reich, Angela T. Moles, John Dickie, Amy E. Zanne, Jérôme Chave, S. Joseph Wright, Serge N. Sheremetiev, Hervé Jactel, Christopher Baraloto, Bruno E. L. Cerabolini, Simon Pierce, Bill Shipley, Fernando Casanoves, Julia S. Joswig, Angela Günther, Valeria Falczuk, Nadja Rüger, Miguel D. Mahecha, Lucas D. Gorné, Bernard Amiaud, Owen K. Atkin, Michael Bahn, Dennis Baldocchi, Michael Beckmann, Benjamin Blonder, William Bond, Ben Bond-Lamberty, Kerry Brown, Sabina Burrascano, Chaeho Byun, Giandiego Campetella, Jeannine Cavender-Bares, F. Stuart Chapin, Brendan Choat, David Anthony Coomes, William K. Cornwell, Joseph Craine, Dylan Craven, Matteo Dainese, Alessandro Carioca de Araujo, Franciska T. de Vries, Tomas Ferreira Domingues, Brian J. Enquist, Jaime Fagúndez, Jingyun Fang, Fernando Fernández-Méndez, Maria T. Fernandez-Piedade, Henry Ford, Estelle Forey, Gregoire T. Freschet, Sophie Gachet, Rachael Gallagher, Walton Green, Greg R. Guerin, Alvaro G. Gutiérrez, Sandy P. Harrison, Wesley Neil Hattingh, Tianhua He, Thomas Hickler, Steven I. Higgins, Pedro Higuchi, Jugo Ilic, Robert B. Jackson, Adel Jalili, Steven Jansen, Fumito Koike, Christian König, Nathan Kraft, Koen Kramer, Holger Kreft, Ingolf Kühn, Hiroko Kurokawa, Eric G. Lamb, Daniel C. Laughlin, Michelle Leishman, Simon Lewis, Frédérique Louault, Ana C. M. Malhado, Peter Manning, Patrick Meir, Maurizio Mencuccini, Julie Messier, Regis Miller, Vanessa Minden, Jane Molofsky, Rebecca Montgomery, Gabriel Montserrat-Martí, Marco Moretti, Sandra Müller, Ülo Niinemets, Romà Ogaya, Kinga Öllerer, Vladimir Onipchenko, Yusuke Onoda, Wim A. Ozinga, Juli G. Pausas, Begoña Peco, Josep Penuelas, Valério D. Pillar, Clara Pladevall, Christine Römermann, Lawren Sack, Norma Salinas, Brody Sandel, Jordi Sardans, Brandon Schamp, Michael Scherer-Lorenzen, Ernst-Detlef Schulze, Fritz Schweingruber, Satomi Shiodera, Ênio Sosinski, Nadejda Soudzilovskaia, Marko J. Spasojevic, Emily Swaine, Nathan Swenson, Susanne Tautenhahn, Ken Thompson, Alexia Totte, Rocío Urrutia-Jalabert, Fernando Valladares, Peter van Bodegom, François Vasseur, Kris Verheyen, Denis Vile, Cyrille Violle, Betsy von Holle, Patrick Weigelt, Evan Weiher, Michael C. Wiemann, Mathew Williams, Justin Wright, Gerhard Zotz, Biology, General Botany and Nature Management, Instituto Multidisciplinario de Biología Vegetal [Córdoba] (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Facultad de Ciencias Exactas, Físicas y Naturales [Córdoba], Universidad Nacional de Córdoba [Argentina]-Universidad Nacional de Córdoba [Argentina], Universidad Nacional de Córdoba [Argentina], Ecologie quantitative et évolutive des communautés, Département écologie évolutive [LBBE], Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry - Montpellier 3 (UPVM)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM), Biodiversité, Gènes & Communautés (BioGeCo), Université de Bordeaux (UB)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Écophysiologie des Plantes sous Stress environnementaux (LEPSE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Etude et Compréhension de la biodiversité (ECODIV), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), Unité Mixte de Recherche sur l'Ecosystème Prairial - UMR (UREP), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), TRY initiative on plant traits (https://www.try-db.org).TRY is an initiative of the Max Planck Institute for Biogeochemistry, bioDISCOVERY/Future Earth (ICSU), the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig and Nucleo DiverSus (CONICET-Universidad Nacional de Cordoba, Argentina)., The Global Spectrum of Plant Form and Function study has been supported by the European BACI project (Towards a Biosphere Atmosphere change Index, EU grant ID 640176), FONCyT, CONICET, Universidad Nacional de Cordoba, the Inter-American Institute for Global Change Research, and The Newton Fund (NERC UK -CONICET ARG), Díaz, Sandra [0000-0003-0012-4612], Kattge, Jens [0000-0002-1022-8469], Wright, Ian J [0000-0001-8338-9143], Lavorel, Sandra [0000-0002-7300-2811], Dray, Stéphane [0000-0003-0153-1105], Wirth, Christian [0000-0003-2604-8056], Garnier, Eric [0000-0002-9392-5154], Westoby, Mark [0000-0001-7690-4530], Reich, Peter B [0000-0003-4424-662X], Moles, Angela T [0000-0003-2041-7762], Zanne, Amy E [0000-0001-6379-9452], Chave, Jérôme [0000-0002-7766-1347], Wright, S Joseph [0000-0003-4260-5676], Sheremetiev, Serge N [0000-0002-0318-6766], Baraloto, Christopher [0000-0001-7322-8581], Cerabolini, Bruno EL [0000-0002-3793-0733], Casanoves, Fernando [0000-0001-8765-9382], Joswig, Julia S [0000-0002-7786-1728], Mahecha, Miguel D [0000-0003-3031-613X], Atkin, Owen K [0000-0003-1041-5202], Bahn, Michael [0000-0001-7482-9776], Bond, William [0000-0002-3441-2084], Bond-Lamberty, Ben [0000-0001-9525-4633], Byun, Chaeho [0000-0003-3209-3275], Campetella, Giandiego [0000-0001-6126-522X], Cavender-Bares, Jeannine [0000-0003-3375-9630], Chapin, F Stuart [0000-0002-2558-9910], Choat, Brendan [0000-0002-9105-640X], Coomes, David Anthony [0000-0002-8261-2582], Cornwell, William K [0000-0003-4080-4073], Craine, Joseph [0000-0001-6561-3244], Craven, Dylan [0000-0003-3940-833X], Dainese, Matteo [0000-0001-7052-5572], Domingues, Tomas Ferreira [0000-0003-2857-9838], Enquist, Brian J [0000-0002-6124-7096], Gallagher, Rachael [0000-0002-4680-8115], Harrison, Sandy P [0000-0001-5687-1903], Hattingh, Wesley Neil [0000-0002-3626-5137], He, Tianhua [0000-0002-0924-3637], Higuchi, Pedro [0000-0002-3855-555X], Jackson, Robert B [0000-0001-8846-7147], Jansen, Steven [0000-0002-4476-5334], Kreft, Holger [0000-0003-4471-8236], Kühn, Ingolf [0000-0003-1691-8249], Kurokawa, Hiroko [0000-0001-8778-8045], Laughlin, Daniel C [0000-0002-9651-5732], Manning, Peter [0000-0002-7940-2023], Mencuccini, Maurizio [0000-0003-0840-1477], Müller, Sandra [0000-0003-4289-755X], Pausas, Juli G [0000-0003-3533-5786], Penuelas, Josep [0000-0002-7215-0150], Pillar, Valério D [0000-0001-6408-2891], Sack, Lawren [0000-0002-7009-7202], Salinas, Norma [0000-0001-9941-2109], Sardans, Jordi [0000-0003-2478-0219], Scherer-Lorenzen, Michael [0000-0001-9566-590X], Sosinski, Ênio [0000-0001-6310-9474], Spasojevic, Marko J [0000-0003-1808-0048], Weigelt, Patrick [0000-0002-2485-3708], Williams, Mathew [0000-0001-6117-5208], Zotz, Gerhard [0000-0002-6823-2268], Apollo - University of Cambridge Repository, Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Diaz, S, Kattge, J, Cornelissen, JHC, Wright, IJ, Lavorel, S, Dray, S, Reu, B, Kleyer, M, Wirth, C, Prentice, IC, Garnier, E, Bonisch, G, Westoby, M, Poorter, H, Reich, PB, Moles, AT, Dickie, J, Zanne, AE, Chave, J, Wright, SJ, Sheremetiev, SN, Jactel, H, Baraloto, C, Cerabolini, BEL, Pierce, S, Shipley, B, Casanoves, F, Joswig, JS, Gunther, A, Falczuk, V, Ruger, N, Mahecha, MD, Gorne, LD, Amiaud, B, Atkin, OK, Bahn, M, Baldocchi, D, Beckmann, M, Blonder, B, Bond, W, Bond-Lamberty, B, Brown, K, Burrascano, S, Byun, C, Campetella, G, Cavender-Bares, J, Chapin, FS, Choat, B, Coomes, DA, Cornwell, WK, Craine, J, Craven, D, Dainese, M, de Araujo, AC, de Vries, FT, Domingues, TF, Enquist, BJ, Fagundez, J, Fang, J, Fernandez-Mendez, F, Fernandez-Piedade, MT, Ford, H, Forey, E, Freschet, GT, Gachet, S, Gallagher, R, Green, W, Guerin, GR, Gutierrez, AG, Harrison, SP, Hattingh, WN, He, T, Hickler, T, Higgins, SI, Higuchi, P, Ilic, J, Jackson, RB, Jalili, A, Jansen, S, Koike, F, Konig, C, Kraft, N, Kramer, K, Kreft, H, Kuhn, I, Kurokawa, H, Lamb, EG, Laughlin, DC, Leishman, M, Lewis, S, Louault, F, Malhado, ACM, Manning, P, Meir, P, Mencuccini, M, Messier, J, Miller, R, Minden, V, Molofsky, J, Montgomery, R, Montserrat-Marti, G, Moretti, M., Muller, S, Niinemets, U, Ogaya, R, Ollerer, K, Onipchenko, V, Onoda, Y, Ozinga, WA, Pausas, JG, Peco, B, Penuelas, J, Pillar, VD, Pladevall, C, Romermann, C, Sack, L, Salinas, N, Sandel, B, Sardans, J, Schamp, B, Scherer-Lorenzen, M, Schulze, ED, Schweingruber, F, Shiodera, S, Sosinski, E, SOUDZILOVSKAIA, Nadia, Spasojevic, MJ, Swaine, E, Swenson, N, Tautenhahn, S, Thompson, K, Totte, A, Urrutia-Jalabert, R, Valladares, F, van Bodegom, P, Vasseur, F, Verheyen, K, Vile, D, Violle, C, von Holle, B, Weigelt, P, Weiher, E, Wiemann, MC, Williams, M, Wright, J, Zotz, G, and Systems Ecology
- Subjects
Statistics and Probability ,Data Descriptor ,[SDV]Life Sciences [q-bio] ,Bos- en Landschapsecologie ,Library and Information Sciences ,Education ,SIZE-REDUCTION ,QUERCUS-ILEX ,WIDE-RANGE ,Life Science ,Forest and Landscape Ecology ,Macroecology ,Vegetatie ,Vegetation ,ENVIRONMENT RELATIONSHIPS ,3103 Ecology ,Biology and Life Sciences ,Biodiversity ,3108 Plant Biology ,Computer Science Applications ,Biogeography ,631/158/852 ,FOLIAR NITROGEN ISOTOPES ,631/158/851 ,[SDE]Environmental Sciences ,Vegetatie, Bos- en Landschapsecologie ,Vegetation, Forest and Landscape Ecology ,LEAF ECONOMICS SPECTRUM ,Statistics, Probability and Uncertainty ,data-descriptor ,ELEVATED CO2 ,WOODY-PLANTS ,PHOTOSYNTHETIC CAPACITY ,631/158/670 ,RELATIVE GROWTH-RATE ,Information Systems ,31 Biological Sciences - Abstract
[Abstract] Here we provide the ‘Global Spectrum of Plant Form and Function Dataset’, containing species mean values for six vascular plant traits. Together, these traits –plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass – define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date. The study has been supported by the TRY initiative on plant traits (https://www.try-db.org). TRY is an initiative of the Max Planck Institute for Biogeochemistry, bioDISCOVERY/Future Earth (ICSU), the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig and Núcleo DiverSus (CONICET- Universidad Nacional de Córdoba, Argentina). The Global Spectrum of Plant Form and Function study has been supported by the European BACI project (Towards a Biosphere Atmosphere change Index, EU grant ID 640176), and grants to SD by FONCyT, CONICET, Universidad Nacional de Córdoba, the Inter-American Institute for Global Change Research, and The Newton Fund (NERC UK – CONICET ARG). VO thanks RSF (#19-14-00038p). Open Access funding enabled and organized by Projekt DEAL
- Published
- 2022
5. Operator and center characteristics, and choice of pacing mode.
- Author
-
Scott PA, Cannata A, Shote A, Wright IJ, Bhuva AN, Lovell MJ, Plummer C, de Belder M, Dayer M, and Murgatroyd FD
- Abstract
Competing Interests: Disclosures The authors have no conflicts of interest to disclose.
- Published
- 2024
- Full Text
- View/download PDF
6. An integrated fast-slow plant and nematode economics spectrum predicts soil organic carbon dynamics during natural restoration.
- Author
-
Zhang C, Zhu T, Nielsen UN, Wright IJ, Li N, Chen X, and Liu M
- Abstract
Aboveground and belowground attributes of terrestrial ecosystems interact to shape carbon (C) cycling. However, plants and soil organisms are usually studied separately, leading to a knowledge gap regarding their coordinated contributions to ecosystem C cycling. We explored whether integrated consideration of plant and nematode traits better explained soil organic C (SOC) dynamics than plant or nematode traits considered separately. Our study system was a space-for-time natural restoration chronosequence following agricultural abandonment in a subtropical region, with pioneer, early, mid and climax stages. We identified an integrated fast-slow trait spectrum encompassing plants and nematodes, demonstrating coordinated shifts from fast strategies in the pioneer stage to slow strategies in the climax stage, corresponding to enhanced SOC dynamics. Joint consideration of plant and nematode traits explained more variation in SOC than by either group alone. Structural equation modeling revealed that the integrated fast-slow trait spectrum influenced SOC through its regulation of microbial traits, including microbial C use efficiency and microbial biomass. Our findings confirm the pivotal role of plant-nematode trait coordination in modulating ecosystem C cycling and highlight the value of incorporating belowground traits into biogeochemical cycling under global change scenarios., (© 2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.)
- Published
- 2024
- Full Text
- View/download PDF
7. Linking nematodes and ecosystem function: a trait-based framework.
- Author
-
Zhang C, Wright IJ, Nielsen UN, Geisen S, and Liu M
- Subjects
- Animals, Soil parasitology, Soil chemistry, Life History Traits, Plants parasitology, Nematoda physiology, Ecosystem
- Abstract
Trait-based approaches are being increasingly adopted to understand species' ecological strategies and how organisms influence ecosystem function. Trait-based research on soil organisms, however, remains poorly developed compared with that for plants. The abundant and diverse soil nematodes are prime candidates to advance trait-based approaches belowground, but a unified trait framework to describe nematode ecological strategies and assess their linkages with ecosystem function is lacking. We categorized nematode traits as morphological, physiological, life history, and community clusters, and proposed the nematode economics spectrum (NES) to better understand nematode ecological strategies and their association with ecosystem function. We argue that bridging the NES and the plant economics spectrum will facilitate a more holistic understanding of ecosystem carbon and nutrient cycling under global change., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
8. The AusTraits plant dictionary.
- Author
-
Wenk EH, Sauquet H, Gallagher RV, Brownlee R, Boettiger C, Coleman D, Yang S, Auld T, Barrett R, Brodribb T, Choat B, Dun L, Ellsworth D, Gosper C, Guja L, Jordan GJ, Le Breton T, Leigh A, Lu-Irving P, Medlyn B, Nolan R, Ooi M, Sommerville KD, Vesk P, White M, Wright IJ, and Falster DS
- Subjects
- Databases, Factual, Dictionaries as Topic, Plants
- Abstract
Traits with intuitive names, a clear scope and explicit description are essential for all trait databases. The lack of unified, comprehensive, and machine-readable plant trait definitions limits the utility of trait databases, including reanalysis of data from a single database, or analyses that integrate data across multiple databases. Both can only occur if researchers are confident the trait concepts are consistent within and across sources. Here we describe the AusTraits Plant Dictionary (APD), a new data source of terms that extends the trait definitions included in a recent trait database, AusTraits. The development process of the APD included three steps: review and formalisation of the scope of each trait and the accompanying trait description; addition of trait metadata; and publication in both human and machine-readable forms. Trait definitions include keywords, references, and links to related trait concepts in other databases, enabling integration of AusTraits with other sources. The APD will both improve the usability of AusTraits and foster the integration of trait data across global and regional plant trait databases., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
9. Leaf phosphorus fractions vary with leaf economic traits among 35 Australian woody species.
- Author
-
Tsujii Y, Atwell BJ, Lambers H, and Wright IJ
- Subjects
- Humans, Australia, Phosphates metabolism, Nitrogen metabolism, Soil, Plant Leaves metabolism, Phosphorus metabolism, Plants metabolism
- Abstract
Adaptations of plants to phosphorus (P) deficiency include reduced investment of leaf P in storage (orthophosphates in vacuoles), nucleic acids and membrane lipids. Yet, it is unclear how these adaptations are associated with plant ecological strategies. Five leaf P fractions (orthophosphate P, P
i ; metabolite P, PM ; nucleic acid P, PN ; lipid P, PL ; and residual P, PR ) were analysed alongside leaf economic traits among 35 Australian woody species from three habitats: one a high-P basalt-derived soil and two low-P sandstone-derived soils, one undisturbed and one disturbed by human activities with artificial P inputs. Species at the undisturbed low-P site generally exhibited lower concentrations of total leaf P ([Ptotal ]), primarily associated with lower concentrations of Pi , and PN . The relative allocation of P to each fraction varied little among sites, except that higher PL per [Ptotal ] (rPL ) was recorded at the undisturbed low-P site than at the high-P site. This higher rPL , reflecting relative allocation to membranes, was primarily associated with lower concentrations of leaf nitrogen at the undisturbed low-P site than at the high-P site. Associations between leaf P fractions and leaf nitrogen may provide a basis for understanding the variation in plant ecological strategies dependent on soil P availability., (© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.)- Published
- 2024
- Full Text
- View/download PDF
10. Revisiting the role of mean annual precipitation in shaping functional trait distributions at a continental scale.
- Author
-
Towers IR, Vesk PA, Wenk EH, Gallagher RV, Windecker SM, Wright IJ, and Falster DS
- Subjects
- Temperature, Ecosystem, Climate Change
- Published
- 2024
- Full Text
- View/download PDF
11. Leaf-level coordination principles propagate to the ecosystem scale.
- Author
-
Gomarasca U, Migliavacca M, Kattge J, Nelson JA, Niinemets Ü, Wirth C, Cescatti A, Bahn M, Nair R, Acosta ATR, Arain MA, Beloiu M, Black TA, Bruun HH, Bucher SF, Buchmann N, Byun C, Carrara A, Conte A, da Silva AC, Duveiller G, Fares S, Ibrom A, Knohl A, Komac B, Limousin JM, Lusk CH, Mahecha MD, Martini D, Minden V, Montagnani L, Mori AS, Onoda Y, Peñuelas J, Perez-Priego O, Poschlod P, Powell TL, Reich PB, Šigut L, van Bodegom PM, Walther S, Wohlfahrt G, Wright IJ, and Reichstein M
- Subjects
- Climate Change, Plant Leaves, Phenotype, Ecosystem, Plants
- Abstract
Fundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories - the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis - are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
12. Replicated Evolution in Plants.
- Author
-
James ME, Brodribb T, Wright IJ, Rieseberg LH, and Ortiz-Barrientos D
- Subjects
- Phenotype, Biological Evolution, Ecosystem, Ecotype
- Abstract
Similar traits and functions commonly evolve in nature. Here, we explore patterns of replicated evolution across the plant kingdom and discuss the processes responsible for such patterns. We begin this review by defining replicated evolution and the theoretical, genetic, and ecological concepts that help explain it. We then focus our attention on empirical cases of replicated evolution at the phenotypic and genotypic levels. We find that replication at the ecotype level is common, but evidence for repeated ecological speciation is surprisingly sparse. On the other hand, the replicated evolution of ecological strategies and physiological mechanisms across similar biomes appears to be pervasive. We conclude by highlighting where future efforts can help us bridge the understanding of replicated evolution across different levels of biological organization. Earth's landscape is diverse but also repeats itself. Organisms seem to have followed suit.
- Published
- 2023
- Full Text
- View/download PDF
13. Coordination of photosynthetic traits across soil and climate gradients.
- Author
-
Westerband AC, Wright IJ, Maire V, Paillassa J, Prentice IC, Atkin OK, Bloomfield KJ, Cernusak LA, Dong N, Gleason SM, Guilherme Pereira C, Lambers H, Leishman MR, Malhi Y, and Nolan RH
- Subjects
- Climate, Photosynthesis, Plant Leaves, Plants, Soil chemistry, Carbon Dioxide
- Abstract
"Least-cost theory" posits that C
3 plants should balance rates of photosynthetic water loss and carboxylation in relation to the relative acquisition and maintenance costs of resources required for these activities. Here we investigated the dependency of photosynthetic traits on climate and soil properties using a new Australia-wide trait dataset spanning 528 species from 67 sites. We tested the hypotheses that plants on relatively cold or dry sites, or on relatively more fertile sites, would typically operate at greater CO2 drawdown (lower ratio of leaf internal to ambient CO2 , Ci :Ca ) during light-saturated photosynthesis, and at higher leaf N per area (Narea ) and higher carboxylation capacity (Vcmax 25 ) for a given rate of stomatal conductance to water vapour, gsw . These results would be indicative of plants having relatively higher water costs than nutrient costs. In general, our hypotheses were supported. Soil total phosphorus (P) concentration and (more weakly) soil pH exerted positive effects on the Narea -gsw and Vcmax 25 -gsw slopes, and negative effects on Ci :Ca . The P effect strengthened when the effect of climate was removed via partial regression. We observed similar trends with increasing soil cation exchange capacity and clay content, which affect soil nutrient availability, and found that soil properties explained similar amounts of variation in the focal traits as climate did. Although climate typically explained more trait variation than soil did, together they explained up to 52% of variation in the slope relationships and soil properties explained up to 30% of the variation in individual traits. Soils influenced photosynthetic traits as well as their coordination. In particular, the influence of soil P likely reflects the Australia's geologically ancient low-relief landscapes with highly leached soils. Least-cost theory provides a valuable framework for understanding trade-offs between resource costs and use in plants, including limiting soil nutrients., (© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)- Published
- 2023
- Full Text
- View/download PDF
14. Leaf economics fundamentals explained by optimality principles.
- Author
-
Wang H, Prentice IC, Wright IJ, Warton DI, Qiao S, Xu X, Zhou J, Kikuzawa K, and Stenseth NC
- Abstract
The life span of leaves increases with their mass per unit area (LMA). It is unclear why. Here, we show that this empirical generalization (the foundation of the worldwide leaf economics spectrum) is a consequence of natural selection, maximizing average net carbon gain over the leaf life cycle. Analyzing two large leaf trait datasets, we show that evergreen and deciduous species with diverse construction costs (assumed proportional to LMA) are selected by light, temperature, and growing-season length in different, but predictable, ways. We quantitatively explain the observed divergent latitudinal trends in evergreen and deciduous LMA and show how local distributions of LMA arise by selection under different environmental conditions acting on the species pool. These results illustrate how optimality principles can underpin a new theory for plant geography and terrestrial carbon dynamics.
- Published
- 2023
- Full Text
- View/download PDF
15. Ecological strategies of (pl)ants: Towards a world-wide worker economic spectrum for ants.
- Author
-
Gibb H, Bishop TR, Leahy L, Parr CL, Lessard JP, Sanders NJ, Shik JZ, Ibarra-Isassi J, Narendra A, Dunn RR, and Wright IJ
- Abstract
Current global challenges call for a rigorously predictive ecology. Our understanding of ecological strategies, imputed through suites of measurable functional traits, comes from decades of work that largely focussed on plants. However, a key question is whether plant ecological strategies resemble those of other organisms.Among animals, ants have long been recognised to possess similarities with plants: as (largely) central place foragers. For example, individual ant workers play similar foraging roles to plant leaves and roots and are similarly expendable. Frameworks that aim to understand plant ecological strategies through key functional traits, such as the 'leaf economics spectrum', offer the potential for significant parallels with ant ecological strategies.Here, we explore these parallels across several proposed ecological strategy dimensions, including an 'economic spectrum', propagule size-number trade-offs, apparency-defence trade-offs, resource acquisition trade-offs and stress-tolerance trade-offs. We also highlight where ecological strategies may differ between plants and ants. Furthermore, we consider how these strategies play out among the different modules of eusocial organisms, where selective forces act on the worker and reproductive castes, as well as the colony.Finally, we suggest future directions for ecological strategy research, including highlighting the availability of data and traits that may be more difficult to measure, but should receive more attention in future to better understand the ecological strategies of ants. The unique biology of eusocial organisms provides an unrivalled opportunity to bridge the gap in our understanding of ecological strategies in plants and animals and we hope that this perspective will ignite further interest. Read the free Plain Language Summary for this article on the Journal blog., Competing Interests: There is no conflict of interest., (© 2022 The Authors. Functional Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.)
- Published
- 2023
- Full Text
- View/download PDF
16. The global spectrum of plant form and function: enhanced species-level trait dataset.
- Author
-
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Zanne AE, Chave J, Wright SJ, Sheremetiev SN, Jactel H, Baraloto C, Cerabolini BEL, Pierce S, Shipley B, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD, Amiaud B, Atkin OK, Bahn M, Baldocchi D, Beckmann M, Blonder B, Bond W, Bond-Lamberty B, Brown K, Burrascano S, Byun C, Campetella G, Cavender-Bares J, Chapin FS 3rd, Choat B, Coomes DA, Cornwell WK, Craine J, Craven D, Dainese M, de Araujo AC, de Vries FT, Domingues TF, Enquist BJ, Fagúndez J, Fang J, Fernández-Méndez F, Fernandez-Piedade MT, Ford H, Forey E, Freschet GT, Gachet S, Gallagher R, Green W, Guerin GR, Gutiérrez AG, Harrison SP, Hattingh WN, He T, Hickler T, Higgins SI, Higuchi P, Ilic J, Jackson RB, Jalili A, Jansen S, Koike F, König C, Kraft N, Kramer K, Kreft H, Kühn I, Kurokawa H, Lamb EG, Laughlin DC, Leishman M, Lewis S, Louault F, Malhado ACM, Manning P, Meir P, Mencuccini M, Messier J, Miller R, Minden V, Molofsky J, Montgomery R, Montserrat-Martí G, Moretti M, Müller S, Niinemets Ü, Ogaya R, Öllerer K, Onipchenko V, Onoda Y, Ozinga WA, Pausas JG, Peco B, Penuelas J, Pillar VD, Pladevall C, Römermann C, Sack L, Salinas N, Sandel B, Sardans J, Schamp B, Scherer-Lorenzen M, Schulze ED, Schweingruber F, Shiodera S, Sosinski Ê, Soudzilovskaia N, Spasojevic MJ, Swaine E, Swenson N, Tautenhahn S, Thompson K, Totte A, Urrutia-Jalabert R, Valladares F, van Bodegom P, Vasseur F, Verheyen K, Vile D, Violle C, von Holle B, Weigelt P, Weiher E, Wiemann MC, Williams M, Wright J, and Zotz G
- Abstract
Here we provide the 'Global Spectrum of Plant Form and Function Dataset', containing species mean values for six vascular plant traits. Together, these traits -plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass - define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
17. Leaf nitrogen from the perspective of optimal plant function.
- Author
-
Dong N, Prentice IC, Wright IJ, Wang H, Atkin OK, Bloomfield KJ, Domingues TF, Gleason SM, Maire V, Onoda Y, Poorter H, and Smith NG
- Abstract
Leaf dry mass per unit area (LMA), carboxylation capacity ( V
cmax ) and leaf nitrogen per unit area (Narea ) and mass (Nmass ) are key traits for plant functional ecology and ecosystem modelling. There is however no consensus about how these traits are regulated, or how they should be modelled. Here we confirm that observed leaf nitrogen across species and sites can be estimated well from observed LMA and Vcmax at 25°C ( Vcmax25 ). We then test the hypothesis that global variations of both quantities depend on climate variables in specific ways that are predicted by leaf-level optimality theory, thus allowing both Narea to be predicted as functions of the growth environment.A new global compilation of field measurements was used to quantify the empirical relationships of leaf N to Vcmax25 and LMA. Relationships of observed Vcmax25 and LMA to climate variables were estimated, and compared to independent theoretical predictions of these relationships. Soil effects were assessed by analysing biases in the theoretical predictions.LMA was the most important predictor of Narea (increasing) and Nmass (decreasing). About 60% of global variation across species and sites in observed Narea , and 31% in Nmass , could be explained by observed LMA and Vcmax25 . These traits, in turn, were quantitatively related to climate variables, with significant partial relationships similar or indistinguishable from those predicted by optimality theory. Predicted trait values explained 21% of global variation in observed site-mean Vcmax25 , 43% in LMA and 31% in Narea . Predicted Vcmax25 was biased low on clay-rich soils but predicted LMA was biased high, with compensating effects on Narea . Narea was overpredicted on organic soils. Synthesis . Global patterns of variation in observed site-mean Narea can be explained by climate-induced variations in optimal Vcmax25 and LMA. Leaf nitrogen should accordingly be modelled as a consequence (not a cause) of Vcmax25 and LMA, both being optimized to the environment. Nitrogen limitation of plant growth would then be modelled principally via whole-plant carbon allocation, rather than via leaf-level traits. Further research is required to better understand and model the terrestrial nitrogen and carbon cycles and their coupling., Competing Interests: There is no conflict of interest., (© 2022 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.)- Published
- 2022
- Full Text
- View/download PDF
18. Leaf water content contributes to global leaf trait relationships.
- Author
-
Wang Z, Huang H, Wang H, Peñuelas J, Sardans J, Niinemets Ü, Niklas KJ, Li Y, Xie J, and Wright IJ
- Subjects
- Nitrogen metabolism, Phosphorus metabolism, Photosynthesis, Plant Leaves metabolism, Ecosystem, Water
- Abstract
Leaf functional traits are important indicators of plant growth and ecosystem dynamics. Despite a wealth of knowledge about leaf trait relationships, a mechanistic understanding of how biotic and abiotic factors quantitatively influence leaf trait variation and scaling is still incomplete. We propose that leaf water content (LWC) inherently affects other leaf traits, although its role has been largely neglected. Here, we present a modification of a previously validated model based on metabolic theory and use an extensive global leaf trait dataset to test it. Analyses show that mass-based photosynthetic capacity and specific leaf area increase nonlinearly with LWC, as predicted by the model. When the effects of temperature and LWC are controlled, the numerical values for the leaf area-mass scaling exponents converge onto 1.0 across plant functional groups, ecosystem types, and latitudinal zones. The data also indicate that leaf water mass is a better predictor of whole-leaf photosynthesis and leaf area than whole-leaf nitrogen and phosphorus masses. Our findings highlight a comprehensive theory that can quantitatively predict some global patterns from the leaf economics spectrum., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
19. Leaf trait covariation and controls on leaf mass per area (LMA) following cotton domestication.
- Author
-
Lei Z, Westerband AC, Wright IJ, He Y, Zhang W, Cai X, Zhou Z, Liu F, and Zhang Y
- Subjects
- Photosynthesis, Plant Leaves genetics, Plants, Domestication, Gossypium genetics
- Abstract
Background and Aims: The process of domestication has driven dramatic shifts in plant functional traits, including leaf mass per area (LMA). It remains unclear whether domestication has produced concerted shifts in the lower-level anatomical traits that underpin LMA and how these traits in turn affect photosynthesis., Methods: In this study we investigated controls of LMA and leaf gas exchange by leaf anatomical properties at the cellular, tissue and whole-leaf levels, comparing 26 wild and 31 domesticated genotypes of cotton (Gossypium)., Key Results: As expected, domesticated plants expressed lower LMA, higher photosynthesis and higher stomatal conductance, suggesting a shift towards the 'faster' end of the leaf economics spectrum. At whole-leaf level, variation in LMA was predominantly determined by leaf density (LD) both in wild and domesticated genotypes. At tissue level, higher leaf volume per area (Vleaf) in domesticated genotypes was driven by a simultaneous increase in the volume of epidermal, mesophyll and vascular bundle tissue and airspace, while lower LD resulted from a lower volume of palisade tissue and vascular bundles (which are of high density), paired with a greater volume of epidermis and airspace, which are of low density. The volume of spongy mesophyll exerted direct control on photosynthesis in domesticated genotypes but only indirect control in wild genotypes. At cellular level, a shift to larger but less numerous cells with thinner cell walls underpinned a lower proportion of cell wall mass, and thus a reduction in LD., Conclusions: Taken together, cotton domestication has triggered synergistic shifts in the underlying determinants of LMA but also photosynthesis, at cell, tissue and whole-leaf levels, resulting in a marked shift in plant ecological strategy., (© The Author(s) 2022. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
20. Rising CO 2 and warming reduce global canopy demand for nitrogen.
- Author
-
Dong N, Wright IJ, Chen JM, Luo X, Wang H, Keenan TF, Smith NG, and Prentice IC
- Subjects
- Chlorophyll, Photosynthesis physiology, Plant Leaves physiology, Carbon Dioxide, Nitrogen
- Abstract
Nitrogen (N) limitation has been considered as a constraint on terrestrial carbon uptake in response to rising CO
2 and climate change. By extension, it has been suggested that declining carboxylation capacity (Vcmax ) and leaf N content in enhanced-CO2 experiments and satellite records signify increasing N limitation of primary production. We predicted Vcmax using the coordination hypothesis and estimated changes in leaf-level photosynthetic N for 1982-2016 assuming proportionality with leaf-level Vcmax at 25°C. The whole-canopy photosynthetic N was derived using satellite-based leaf area index (LAI) data and an empirical extinction coefficient for Vcmax , and converted to annual N demand using estimated leaf turnover times. The predicted spatial pattern of Vcmax shares key features with an independent reconstruction from remotely sensed leaf chlorophyll content. Predicted leaf photosynthetic N declined by 0.27% yr-1 , while observed leaf (total) N declined by 0.2-0.25% yr-1 . Predicted global canopy N (and N demand) declined from 1996 onwards, despite increasing LAI. Leaf-level responses to rising CO2 , and to a lesser extent temperature, may have reduced the canopy requirement for N by more than rising LAI has increased it. This finding provides an alternative explanation for declining leaf N that does not depend on increasing N limitation., (© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.)- Published
- 2022
- Full Text
- View/download PDF
21. Enhanced leaf turnover and nitrogen recycling sustain CO 2 fertilization effect on tree-ring growth.
- Author
-
Guo Y, Zhang L, Yang L, Shen W, Pan Y, Wright IJ, Luo Y, and Luo T
- Subjects
- Carbon Dioxide, Fertilization, Plant Leaves, Nitrogen, Trees
- Abstract
Whether increased photosynthates under elevated atmospheric CO
2 could translate into sustained biomass accumulation in forest trees remains uncertain. Here we demonstrate how tree radial growth is closely linked to litterfall dynamics, which enhances nitrogen recycling to support a sustained effect of CO2 fertilization on tree-ring growth. Our ten-year observations in two alpine treeline forests indicated that annual (or seasonal) stem radial increments generally had a positive relationship with the previous year's (or season's) litterfall and its associated nitrogen return and resorption. Annual tree-ring width, annual litterfall and annual nitrogen return and resorption all showed an increasing trend during 2007-2017, and most of the variations were explained by elevated atmospheric CO2 rather than climate change. Similar patterns were found in the longer time series of tree-ring width index from 1986-2017. The regional representativeness of our observed patterns was confirmed by the literature data of six other tree species at 11 treeline sites over the Tibetan Plateau. Enhanced nitrogen recycling through increased litterfall under elevated atmospheric CO2 supports a general increasing trend of tree-ring growth in recent decades, especially in cold and nitrogen-poor environments., (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2022
- Full Text
- View/download PDF
22. Physiological trait networks enhance understanding of crop growth and water use in contrasting environments.
- Author
-
Gleason SM, Barnard DM, Green TR, Mackay S, Wang DR, Ainsworth EA, Altenhofen J, Brodribb TJ, Cochard H, Comas LH, Cooper M, Creek D, DeJonge KC, Delzon S, Fritschi FB, Hammer G, Hunter C, Lombardozzi D, Messina CD, Ocheltree T, Stevens BM, Stewart JJ, Vadez V, Wenz J, Wright IJ, Yemoto K, and Zhang H
- Subjects
- Droughts, Ecosystem, Edible Grain, Plant Leaves physiology, Soil chemistry, Xylem physiology, Plant Stomata physiology, Water physiology
- Abstract
Plant function arises from a complex network of structural and physiological traits. Explicit representation of these traits, as well as their connections with other biophysical processes, is required to advance our understanding of plant-soil-climate interactions. We used the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to evaluate physiological trait networks in maize. Net primary productivity (NPP) and grain yield were simulated across five contrasting climate scenarios. Simulations achieving high NPP and grain yield in high precipitation environments featured trait networks conferring high water use strategies: deep roots, high stomatal conductance at low water potential ("risky" stomatal regulation), high xylem hydraulic conductivity and high maximal leaf area index. In contrast, high NPP and grain yield was achieved in dry environments with low late-season precipitation via water conserving trait networks: deep roots, high embolism resistance and low stomatal conductance at low leaf water potential ("conservative" stomatal regulation). We suggest that our approach, which allows for the simultaneous evaluation of physiological traits, soil characteristics and their interactions (i.e., networks), has potential to improve our understanding of crop performance in different environments. In contrast, evaluating single traits in isolation of other coordinated traits does not appear to be an effective strategy for predicting plant performance., (© 2022 John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
23. Convergence in phosphorus constraints to photosynthesis in forests around the world.
- Author
-
Ellsworth DS, Crous KY, De Kauwe MG, Verryckt LT, Goll D, Zaehle S, Bloomfield KJ, Ciais P, Cernusak LA, Domingues TF, Dusenge ME, Garcia S, Guerrieri R, Ishida FY, Janssens IA, Kenzo T, Ichie T, Medlyn BE, Meir P, Norby RJ, Reich PB, Rowland L, Santiago LS, Sun Y, Uddling J, Walker AP, Weerasinghe KWLK, van de Weg MJ, Zhang YB, Zhang JL, and Wright IJ
- Subjects
- Carbon, Photosynthesis, Plant Leaves physiology, Trees physiology, Forests, Phosphorus
- Abstract
Tropical forests take up more carbon (C) from the atmosphere per annum by photosynthesis than any other type of vegetation. Phosphorus (P) limitations to C uptake are paramount for tropical and subtropical forests around the globe. Yet the generality of photosynthesis-P relationships underlying these limitations are in question, and hence are not represented well in terrestrial biosphere models. Here we demonstrate the dependence of photosynthesis and underlying processes on both leaf N and P concentrations. The regulation of photosynthetic capacity by P was similar across four continents. Implementing P constraints in the ORCHIDEE-CNP model, gross photosynthesis was reduced by 36% across the tropics and subtropics relative to traditional N constraints and unlimiting leaf P. Our results provide a quantitative relationship for the P dependence for photosynthesis for the front-end of global terrestrial C models that is consistent with canopy leaf measurements., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
24. Guidelines for the peri-operative management of people with cardiac implantable electronic devices: Guidelines from the British Heart Rhythm Society.
- Author
-
Thomas H, Plummer C, Wright IJ, Foley P, and Turley AJ
- Subjects
- Electronics, Humans, Defibrillators, Implantable, Pacemaker, Artificial
- Abstract
This document provides practical guidance for the management of people with cardiac implantable electronic devices who are undergoing surgical intervention. Increasing numbers of people have cardiac device implants including pacemakers, implantable defibrillators and cardiac resynchronisation devices. During surgical procedures, exposure to electromagnetic interference may lead to inappropriate device function including withholding of pacing function or shock therapies. The guideline summarises key aspects of pre-operative assessment protocols to ensure that all people have their device clearly identified and have had appropriate device follow-up pre-operatively. It outlines general measures which can minimise the risk of potentially problematic electromagnetic interference in the surgical environment. It also includes detailed guidance according to the type of device, whether individuals are dependent on the pacing function of the device and the nature of the procedure they are undergoing. People identified as being at significant risk of harmful procedure-related inappropriate device function may require temporary alteration to the device programming. This may be carried out by a trained cardiac physiologist using a device programmer or, in some cases, can be achieved by clinical magnet application. Guidance on the safe use of magnets and emergency situations is included. Common diagnostic procedures and dental interventions are covered. The guidance aims to provide specific and pragmatic advice which can be applied to provide safe and streamlined care for people with cardiac implantable devices., (© 2022 Association of Anaesthetists.)
- Published
- 2022
- Full Text
- View/download PDF
25. High exposure of global tree diversity to human pressure.
- Author
-
Guo WY, Serra-Diaz JM, Schrodt F, Eiserhardt WL, Maitner BS, Merow C, Violle C, Anand M, Belluau M, Bruun HH, Byun C, Catford JA, Cerabolini BEL, Chacón-Madrigal E, Ciccarelli D, Cornelissen JHC, Dang-Le AT, de Frutos A, Dias AS, Giroldo AB, Guo K, Gutiérrez AG, Hattingh W, He T, Hietz P, Hough-Snee N, Jansen S, Kattge J, Klein T, Komac B, Kraft NJB, Kramer K, Lavorel S, Lusk CH, Martin AR, Mencuccini M, Michaletz ST, Minden V, Mori AS, Niinemets Ü, Onoda Y, Peñuelas J, Pillar VD, Pisek J, Robroek BJM, Schamp B, Slot M, Sosinski ÊE Jr, Soudzilovskaia NA, Thiffault N, van Bodegom P, van der Plas F, Wright IJ, Xu WB, Zheng J, Enquist BJ, and Svenning JC
- Subjects
- Humans, Phylogeny, Anthropogenic Effects, Biodiversity, Conservation of Natural Resources methods, Ecosystem, Trees classification
- Abstract
Safeguarding Earth's tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions. We also assess the effectiveness of several influential proposed conservation prioritization frameworks to protect the top 17% and top 50% of tree priority areas. We find that an average of 50.2% of a tree species' range occurs in 110-km grid cells without any protected areas (PAs), with 6,377 small-range tree species fully unprotected, and that 83% of tree species experience nonnegligible human pressure across their range on average. Protecting high-priority areas for the top 17% and 50% priority thresholds would increase the average protected proportion of each tree species' range to 65.5% and 82.6%, respectively, leaving many fewer species (2,151 and 2,010) completely unprotected. The priority areas identified for trees match well to the Global 200 Ecoregions framework, revealing that priority areas for trees would in large part also optimize protection for terrestrial biodiversity overall. Based on range estimates for >46,000 tree species, our findings show that a large proportion of tree species receive limited protection by current PAs and are under substantial human pressure. Improved protection of biodiversity overall would also strongly benefit global tree diversity.
- Published
- 2022
- Full Text
- View/download PDF
26. AnimalTraits - a curated animal trait database for body mass, metabolic rate and brain size.
- Author
-
Herberstein ME, McLean DJ, Lowe E, Wolff JO, Khan MK, Smith K, Allen AP, Bulbert M, Buzatto BA, Eldridge MDB, Falster D, Fernandez Winzer L, Griffith SC, Madin JS, Narendra A, Westoby M, Whiting MJ, Wright IJ, and Carthey AJR
- Subjects
- Animals, Ecology, Organ Size, Phenotype, Basal Metabolism, Body Weight, Brain, Databases, Factual
- Abstract
Trait databases have become important resources for large-scale comparative studies in ecology and evolution. Here we introduce the AnimalTraits database, a curated database of body mass, metabolic rate and brain size, in standardised units, for terrestrial animals. The database has broad taxonomic breadth, including tetrapods, arthropods, molluscs and annelids from almost 2000 species and 1000 genera. All data recorded in the database are sourced from their original empirical publication, and the original metrics and measurements are included with each record. This allows for subsequent data transformations as required. We have included rich metadata to allow users to filter the dataset. The additional R scripts we provide will assist researchers with aggregating standardised observations into species-level trait values. Our goals are to provide this resource without restrictions, to keep the AnimalTraits database current, and to grow the number of relevant traits in the future., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
27. Nitrogen concentration and physical properties are key drivers of woody tissue respiration.
- Author
-
Westerband AC, Wright IJ, Eller ASD, Cernusak LA, Reich PB, Perez-Priego O, Chhajed SS, Hutley LB, and Lehmann CER
- Subjects
- Australia, Nitrogen, Respiration, Trees, Ecosystem, Wood
- Abstract
Background and Aims: Despite the critical role of woody tissues in determining net carbon exchange of terrestrial ecosystems, relatively little is known regarding the drivers of sapwood and bark respiration., Methods: Using one of the most comprehensive wood respiration datasets to date (82 species from Australian rainforest, savanna and temperate forest), we quantified relationships between tissue respiration rates (Rd) measured in vitro (i.e. 'respiration potential') and physical properties of bark and sapwood, and nitrogen concentration (Nmass) of leaves, sapwood and bark., Key Results: Across all sites, tissue density and thickness explained similar, and in some cases more, variation in bark and sapwood Rd than did Nmass. Higher density bark and sapwood tissues had lower Rd for a given Nmass than lower density tissues. Rd-Nmass slopes were less steep in thicker compared with thinner-barked species and less steep in sapwood than in bark. Including the interactive effects of Nmass, density and thickness significantly increased the explanatory power for bark and sapwood respiration in branches. Among these models, Nmass contributed more to explanatory power in trunks than in branches, and in sapwood than in bark. Our findings were largely consistent across sites, which varied in their climate, soils and dominant vegetation type, suggesting generality in the observed trait relationships. Compared with a global compilation of leaf, stem and root data, Australian species showed generally lower Rd and Nmass, and less steep Rd-Nmass relationships., Conclusions: To the best of our knowledge, this is the first study to report control of respiration-nitrogen relationships by physical properties of tissues, and one of few to report respiration-nitrogen relationships in bark and sapwood. Together, our findings indicate a potential path towards improving current estimates of autotrophic respiration by integrating variation across distinct plant tissues., (© The Author(s) 2022. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
28. Ectopy-triggering ganglionated plexuses ablation to prevent atrial fibrillation: GANGLIA-AF study.
- Author
-
Kim MY, Coyle C, Tomlinson DR, Sikkel MB, Sohaib A, Luther V, Leong KM, Malcolme-Lawes L, Low B, Sandler B, Lim E, Todd M, Fudge M, Wright IJ, Koa-Wing M, Ng FS, Qureshi NA, Whinnett ZI, Peters NS, Newcomb D, Wood C, Dhillon G, Hunter RJ, Lim PB, Linton NWF, and Kanagaratnam P
- Subjects
- Ganglia surgery, Heart Atria, Humans, Prospective Studies, Recurrence, Treatment Outcome, Atrial Fibrillation surgery, Catheter Ablation adverse effects, Catheter Ablation methods, Pulmonary Veins surgery
- Abstract
Background: The ganglionated plexuses (GPs) of the intrinsic cardiac autonomic system may play a role in atrial fibrillation (AF)., Objective: We hypothesized that ablating the ectopy-triggering GPs (ET-GPs) prevents AF., Methods: GANGLIA-AF (ClinicalTrials.gov identifier NCT02487654) was a prospective, randomized, controlled, 3-center trial. ET-GPs were mapped using high frequency stimulation, delivered within the atrial refractory period and ablated until nonfunctional. If triggered AF became incessant, atrioventricular dissociating GPs were ablated. We compared GP ablation (GPA) without pulmonary vein isolation (PVI) against PVI in patients with paroxysmal AF. Follow-up was for 12 months including 3-monthly 48-hour Holter monitors. The primary end point was documented ≥30 seconds of atrial arrhythmia after a 3-month blanking period., Results: A total of 102 randomized patients were analyzed on a per-protocol basis after GPA (n = 52; 51%) or PVI (n = 50; 49%). Patients who underwent GPA had 89 ± 26 high frequency stimulation sites tested, identifying a median of 18.5% (interquartile range 16%-21%) of GPs. The radiofrequency ablation time was 22.9 ± 9.8 minutes in GPA and 38 ± 14.4 minutes in PVI (P < .0001). The freedom from ≥30 seconds of atrial arrhythmia at 12-month follow-up was 50% (26 of 52) with GPA vs 64% (32 of 50) with PVI (log-rank, P = .09). ET-GPA without atrioventricular dissociating GPA achieved 58% (22 of 38) freedom from the primary end point. There was a significantly higher reduction in antiarrhythmic drug usage postablation after GPA than after PVI (55.5% vs 36%; P = .05). Patients were referred for redo ablation procedures in 31% (16 of 52) after GPA and 24% (12 of 50) after PVI (P = .53)., Conclusion: GPA did not prevent atrial arrhythmias more than PVI. However, less radiofrequency ablation was delivered to achieve a higher reduction in antiarrhythmic drug usage with GPA than with PVI., (Copyright © 2021 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
29. A meta-analysis of responses of C 3 plants to atmospheric CO 2 : dose-response curves for 85 traits ranging from the molecular to the whole-plant level.
- Author
-
Poorter H, Knopf O, Wright IJ, Temme AA, Hogewoning SW, Graf A, Cernusak LA, and Pons TL
- Subjects
- Photosynthesis physiology, Plants, Reproducibility of Results, Carbon Dioxide, Plant Leaves physiology
- Abstract
Generalised dose-response curves are essential to understand how plants acclimate to atmospheric CO
2 . We carried out a meta-analysis of 630 experiments in which C3 plants were experimentally grown at different [CO2 ] under relatively benign conditions, and derived dose-response curves for 85 phenotypic traits. These curves were characterised by form, plasticity, consistency and reliability. Considered over a range of 200-1200 µmol mol-1 CO2 , some traits more than doubled (e.g. area-based photosynthesis; intrinsic water-use efficiency), whereas others more than halved (area-based transpiration). At current atmospheric [CO2 ], 64% of the total stimulation in biomass over the 200-1200 µmol mol-1 range has already been realised. We also mapped the trait responses of plants to [CO2 ] against those we have quantified before for light intensity. For most traits, CO2 and light responses were of similar direction. However, some traits (such as reproductive effort) only responded to light, others (such as plant height) only to [CO2 ], and some traits (such as area-based transpiration) responded in opposite directions. This synthesis provides a comprehensive picture of plant responses to [CO2 ] at different integration levels and offers the quantitative dose-response curves that can be used to improve global change simulation models., (© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.)- Published
- 2022
- Full Text
- View/download PDF
30. Comparisons of photosynthetic and anatomical traits between wild and domesticated cotton.
- Author
-
Lei Z, Liu F, Wright IJ, Carriquí M, Niinemets Ü, Han J, Jia M, Atwell BJ, Cai X, Zhang W, Zhou Z, and Zhang Y
- Subjects
- Carbon Dioxide metabolism, Chloroplasts metabolism, Photosynthesis, Plant Leaves genetics, Gossypium genetics, Mesophyll Cells
- Abstract
Mesophyll conductance (gm) is a crucial leaf trait contributing to the photosynthetic rate (AN). Plant domestication typically leads to an enhancement of AN that is often associated with profound anatomical modifications, but it is unclear which of these structural alterations influence gm. We analyzed the implication of domestication on leaf anatomy and its effect on gm in 26 wild and 31 domesticated cotton genotypes (Gossypium sp.) grown under field conditions. We found that domesticated genotypes had higher AN but similar gm to wild genotypes. Consistent with this, domestication did not translate into significant differences in the fraction of mesophyll occupied by intercellular air spaces (fias) or mesophyll and chloroplast surface area exposed to intercellular air space (Sm/S and Sc/S, respectively). However, leaves of domesticated genotypes were significantly thicker, with larger but fewer mesophyll cells with thinner cell walls. Moreover, domesticated genotypes had higher cell wall conductance (gcw) but smaller cytoplasmic conductance (gcyt) than wild genotypes. It appears that domestication in cotton has not generally led to significant improvement in gm, in part because their thinner mesophyll cell walls (increasing gcw) compensate for their lower gcyt, itself due to larger distance between plasmalemma and chloroplast envelopes., (© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
31. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation.
- Author
-
Joswig JS, Wirth C, Schuman MC, Kattge J, Reu B, Wright IJ, Sippel SD, Rüger N, Richter R, Schaepman ME, van Bodegom PM, Cornelissen JHC, Díaz S, Hattingh WN, Kramer K, Lens F, Niinemets Ü, Reich PB, Reichstein M, Römermann C, Schrodt F, Anand M, Bahn M, Byun C, Campetella G, Cerabolini BEL, Craine JM, Gonzalez-Melo A, Gutiérrez AG, He T, Higuchi P, Jactel H, Kraft NJB, Minden V, Onipchenko V, Peñuelas J, Pillar VD, Sosinski Ê, Soudzilovskaia NA, Weiher E, and Mahecha MD
- Subjects
- Phenotype, Plant Leaves, Plants, Ecosystem, Soil
- Abstract
Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land-climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles., (© 2021. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
32. A roadmap to plant functional island biogeography.
- Author
-
Schrader J, Wright IJ, Kreft H, and Westoby M
- Subjects
- Islands, Plants genetics, Symbiosis, Biodiversity, Ecosystem
- Abstract
Island biogeography is the study of the spatio-temporal distribution of species, communities, assemblages or ecosystems on islands and other isolated habitats. Island diversity is structured by five classes of process: dispersal, establishment, biotic interactions, extinction and evolution. Classical approaches in island biogeography focused on species richness as the deterministic outcome of these processes. This has proved fruitful, but species traits can potentially offer new biological insights into the processes by which island life assembles and why some species perform better at colonising and persisting on islands. Functional traits refer to morphological and phenological characteristics of an organism or species that can be linked to its ecological strategy and that scale up from individual plants to properties of communities and ecosystems. A baseline hypothesis is for traits and ecological strategies of island species to show similar patterns as a matched mainland environment. However, strong dispersal, environmental and biotic-interaction filters as well as stochasticity associated with insularity modify this baseline. Clades that do colonise often embark on distinct ecological and evolutionary pathways, some because of distinctive evolutionary forces on islands, and some because of the opportunities offered by freedom from competitors or herbivores or the absence of mutualists. Functional traits are expected to be shaped by these processes. Here, we review and discuss the potential for integrating functional traits into island biogeography. While we focus on plants, the general considerations and concepts may be extended to other groups of organisms. We evaluate how functional traits on islands relate to core principles of species dispersal, establishment, extinction, reproduction, biotic interactions, evolution and conservation. We formulate existing knowledge as 33 working hypotheses. Some of these are grounded on firm empirical evidence, others provide opportunities for future research. We organise our hypotheses under five overarching sections. Section A focuses on plant functional traits enabling species dispersal to islands. Section B discusses how traits help to predict species establishment, successional trajectories and natural extinctions on islands. Section C reviews how traits indicate species biotic interactions and reproduction strategies and which traits promote intra-island dispersal. Section D discusses how evolution on islands leads to predictable changes in trait values and which traits are most susceptible to change. Section E debates how functional ecology can be used to study multiple drivers of global change on islands and to formulate effective conservation measures. Islands have a justified reputation as research models. They illuminate the forces operating within mainland communities by showing what happens when those forces are released or changed. We believe that the lens of functional ecology can shed more light on these forces than research approaches that do not consider functional differences among species., (© 2021 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.)
- Published
- 2021
- Full Text
- View/download PDF
33. Enhanced photosynthetic nitrogen use efficiency and increased nitrogen allocation to photosynthetic machinery under cotton domestication.
- Author
-
Lei ZY, Wang H, Wright IJ, Zhu XG, Niinemets Ü, Li ZL, Sun DS, Dong N, Zhang WF, Zhou ZL, Liu F, and Zhang YL
- Subjects
- Photosynthesis, Plant Leaves metabolism, Ribulose-Bisphosphate Carboxylase metabolism, Domestication, Nitrogen
- Abstract
Domestication involves dramatic phenotypic and physiological diversifications due to successive selection by breeders toward high yield and quality. Although photosynthetic nitrogen use efficiency (PNUE) is a major trait for understanding leaf nitrogen economy, it is unclear whether PNUE of cotton has been improved under domestication. Here, we investigated the effect of domestication on nitrogen allocation to photosynthetic machinery and PNUE in 25 wild and 37 domesticated cotton genotypes. The results showed that domesticated genotypes had higher nitrogen content per mass (N
m ), net photosynthesis under saturated light (Asat ), and PNUE but similar nitrogen content per area (Na ) compared with wild genotypes. As expected, in both genotypes, PNUE was positively related to Asat but negatively correlated with Na . However, the relative contribution of Asat to PNUE was greater than the contribution from Na . Domesticated genotypes had higher nitrogen allocation to light-harvesting (NL , nitrogen in light-harvesting chlorophyll-protein complex), to bioenergetics (Nb , total nitrogen of cytochrome f, ferredoxin NADP reductase, and the coupling factor), and to Rubisco (Nr ) than wild genotypes; however, the two genotype groups did not differ in PNUEp , the ratio of Asat to Np (itself the sum of NL , Nb , and Nr ). Our results suggest that more nitrogen allocation to photosynthetic machinery has boosted Asat under cotton domestication. Improving the efficiency of nitrogen use in photosynthetic machinery might be future aim to enhance Asat of cotton., (© 2021. The Author(s), under exclusive licence to Springer Nature B.V.)- Published
- 2021
- Full Text
- View/download PDF
34. Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements.
- Author
-
Xu H, Wang H, Prentice IC, Harrison SP, and Wright IJ
- Subjects
- Trees, Water, Wood, Photosynthesis, Plant Leaves
- Abstract
Close coupling between water loss and carbon dioxide uptake requires coordination of plant hydraulics and photosynthesis. However, there is still limited information on the quantitative relationships between hydraulic and photosynthetic traits. We propose a basis for these relationships based on optimality theory, and test its predictions by analysis of measurements on 107 species from 11 sites, distributed along a nearly 3000-m elevation gradient. Hydraulic and leaf economic traits were less plastic, and more closely associated with phylogeny, than photosynthetic traits. The two sets of traits were linked by the sapwood to leaf area ratio (Huber value, v
H ). The observed coordination between vH and sapwood hydraulic conductivity (KS ) and photosynthetic capacity (Vcmax ) conformed to the proposed quantitative theory. Substantial hydraulic diversity was related to the trade-off between KS and vH . Leaf drought tolerance (inferred from turgor loss point, -Ψtlp ) increased with wood density, but the trade-off between hydraulic efficiency (KS ) and -Ψtlp was weak. Plant trait effects on vH were dominated by variation in KS , while effects of environment were dominated by variation in temperature. This research unifies hydraulics, photosynthesis and the leaf economics spectrum in a common theoretical framework, and suggests a route towards the integration of photosynthesis and hydraulics in land-surface models., (© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.)- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.