1. Evaluating the performance of Cs2PtI6−xBrx for photovoltaic and photocatalytic applications using first-principles study and SCAPS-1D simulation
- Author
-
Hadeer H. AbdElAziz, Mohamed Taha, Waleed M.A. El Rouby, M.H. Khedr, and Laila Saad
- Subjects
Perovskite ,DFT ,Solar cell ,Cs2PtI6 ,Photocatalysis ,SCAPS-1D ,Science (General) ,Q1-390 ,Social sciences (General) ,H1-99 - Abstract
All inorganic free-lead halide double perovskites are attractive materials in solar energy harvesting applications. In this study, density functional theory calculations have been used to predict the structures, band structures, and density of states of Cs2PtI6−xBrx with (x = 0, 2, 4, and 6). The optical properties (reflectivity, refractive index, absorption, dielectric function, conductivity, and loss function) of these materials have been predicted and discussed. The band edges calculations showed that the Cs2PtI6−xBrx may be an efficient visible-light photocatalyst for water splitting and CO2 reduction. The calculated bandgap value of Cs2PtI6 exhibited a great match with the reported experimental values. It has been seen that increasing the doping content of Br− in Cs2PtI6−xBrx (x = 0, 2, 4, and 6) increases the bandgaps from 1.4 eV to 2.6 eV and can be applied in single junction and tandem solar cells. Using Solar Cell Capacitance Simulator (SCAPS), a 1D device modelling has been performed on Cs2PtI6 inorganic lead-free solar cells. For the fully inorganic device, the effect of replacing organic hole transport materials (HTL) and electron transport materials (ETL) with inorganic ones is investigated while keeping high efficiencies and stabilities of solar cell devices. From the obtained results, it was found that WS2 as ETL and Cu2O as HTL were the most suitable materials compared to the others. Further investigation studies are performed on the effect of changing metal back contact work function, absorber layer thickness, doping density, and defect density on the power conversion efficiency (PCE) of the solar cell. The optimized suggested structure (FTO/WS2/Cs2PtI6/Cu2O/Carbon) obtained a PCE of 17.2% under AM1.5 solar illumination.
- Published
- 2022
- Full Text
- View/download PDF