1. Tissue and cellular spatiotemporal dynamics in colon aging.
- Author
-
Daly AC, Cambuli F, Äijö T, Lötstedt B, Marjanovic N, Kuksenko O, Smith-Erb M, Fernandez S, Domovic D, Van Wittenberghe N, Drokhlyansky E, Griffin GK, Phatnani H, Bonneau R, Regev A, and Vickovic S
- Abstract
Tissue structure and molecular circuitry in the colon can be profoundly impacted by systemic age-related effects, but many of the underlying molecular cues remain unclear. Here, we built a cellular and spatial atlas of the colon across three anatomical regions and 11 age groups, encompassing ~1,500 mouse gut tissues profiled by spatial transcriptomics and ~400,000 single nucleus RNA-seq profiles. We developed a new computational framework, cSplotch, which learns a hierarchical Bayesian model of spatially resolved cellular expression associated with age, tissue region, and sex, by leveraging histological features to share information across tissue samples and data modalities. Using this model, we identified cellular and molecular gradients along the adult colonic tract and across the main crypt axis, and multicellular programs associated with aging in the large intestine. Our multi-modal framework for the investigation of cell and tissue organization can aid in the understanding of cellular roles in tissue-level pathology., Competing Interests: Competing interests A.R. is a founder and equity holder of Celsius Therapeutics, an equity holder in Immunitas Therapeutics and until August 31, 2020 was a SAB member of Syros Pharmaceuticals, Neogene Therapeutics, Asimov and ThermoFisher Scientific. From August 1, 2020, A.R. is an employee of Genentech, and equity holder in Roche. S.V is an author on patents applied for by Spatial Transcriptomics AB (10X Genomics Inc). S.V. and A.R. are co-inventors on PCT/US2020/015481 relating to this work. The remaining authors declare no competing interests.
- Published
- 2024
- Full Text
- View/download PDF