Las temperaturas extremas, la sequía y otros estreses abióticos limitan la producción forestal de forma significativa, causando grandes pérdidas económicas en el sector. Los árboles, al ser organismos sésiles, han desarrollado una serie de estrategias para percibir dichos factores, activando respuestas defensivas apropiadas. Entre ellas ocupa un lugar preeminente la síntesis de proteínas con actividad chaperona molecular. Las chaperonas moleculares interaccionan con proteínas desnaturalizadas total o parcialmente, promoviendo su correcto plegamiento y ensamblaje. Las chaperonas moleculares que se sintetizan de forma predominante en plantas, pero no en otros eucariotas, pertenecen a la familia sHSP (small heat-shock proteins). Se trata de una familia inusualmente compleja y heterogénea, cuyos miembros son de pequeño tamaño (16-42 kD) y poseen un dominio “alfa-cristalina” muy conservado. Estas proteínas están implicadas en protección frente a estrés abiótico mediante la estabilización de proteínas y membranas, si bien su mecanismo de acción se conoce de forma incompleta. A pesar del evidente potencial aplicado de las proteínas sHSP, son muy escasos los estudios realizados hasta el momento con un enfoque netamente biotecnológico. Por otra parte, casi todos ellos se han llevado a cabo en especies herbáceas de interés agronómico o en especies modelo, como Arabidopsis thaliana. De ahí que las sHSP de arbóreas hayan sido mucho menos caracterizadas estructural y funcionalmente, y ello a pesar del interés económico y ecológico de los árboles y de su prolongada exposición vital a múltiples factores estresantes. La presente Tesis Doctoral se centra en el estudio de sHSP de varias especies arbóreas de interés económico. El escrutinio exhaustivo de genotecas de cDNA de órganos vegetativos nos ha permitido identificar y caracterizar los componentes mayoritarios de tallo en dos especies productoras de madera noble: nogal y cerezo. También hemos caracterizado la familia completa en chopo, a partir de su secuencia genómica completa. Mediante expresión heteróloga en bacterias, hemos analizado el efecto protector de estas proteínas in vivo frente a distintos tipos de estrés abiótico, relevantes para el sector productivo. Los resultados demuestran que las proteínas sHSP-CI: (i) aumentan la viabilidad celular de E.coli frente a casi todos estos factores, aplicados de forma individual o combinada; (ii) ejercen un rol estabilizador de las membranas celulares frente a condiciones adversas; (iii) sirven para mejorar la producción de otras proteínas recombinantes de interés comercial. El efecto protector de las proteínas sHSP-CI también ha sido analizado in planta, mediante la expresión ectópica de CsHSP17.5-CI en chopos. En condiciones normales de crecimiento no se han observado diferencias fenotípicas entre las líneas transgénicas y los controles, lo que demuestra que se pueden sobre-expresar estas proteínas sin efectos pleiotrópicos deletéreos. En condiciones de estrés térmico, por el contrario, los chopos transgénicos mostraron menos daños y un mejor crecimiento neto. En línea con lo anterior, las actividades biológicas de varias enzimas resultaron más protegidas frente a la inactivación por calor, corroborando la actividad chaperona propuesta para la familia sHSP y su conexión con la tolerancia al estrés abiótico. En lo que respecta a la multiplicación y propagación de chopo in vitro, una forma de cultivo que comporta estrés para las plantas, todas las líneas transgénicas se comportaron mejor que los controles en términos de producción de biomasa (callos) y regeneración de brotes, incluso en ausencia de estrés térmico. También se comportaron mejor durante su cultivo ex vitro. Estos resultados tienen gran potencial aplicado, dada la recalcitrancia de muchas especies vegetales de interés económico a la micropropagación y a la manipulación in vitro en general. Los resultados derivados de esta Tesis, aparte de aportar datos nuevos sobre el efecto protector de las proteínas sHSP citosólicas mayoritarias (clase CI), demuestran por vez primera que la termotolerancia de los árboles puede ser manipulada racionalmente, incrementando los niveles de sHSP mediante técnicas de ingeniería genética. Su interés aplicado es evidente, especialmente en un escenario de calentamiento global. ABSTRACT Abiotic stress produces considerable economic losses in the forest sector, with extreme temperature and drought being amongst the most relevant factors. As sessile organisms, plants have acquired molecular strategies to detect and recognize stressful factors and activate appropriate responses. A wealth of evidence has correlated such responses with the massive induction of proteins belonging to the molecular chaperone family. Molecular chaperones are proteins which interact with incorrectly folded proteins to help them refold to their native state. In contrast to other eukaryotes, the most prominent stress-induced molecular chaperones of plants belong to the sHSP (small Heat Shock Protein) family. sHSPs are a widespread and diverse class of molecular chaperones that range in size from 16 to 42k Da, and whose members have a highly conserved “alpha-crystallin” domain. sHSP proteins play an important role in abiotic stress tolerance, membrane stabilization and developmental processes. Yet, their mechanism of action remains largely unknown. Despite the applied potential of these proteins, only a few studies have addressed so far the biotechnological implications of this protein family. Most studies have focused on herbaceous species of agronomic interest or on model species such as Arabidopsis thaliana. Hence, sHSP are poorly characterized in long-lived woody species, despite their economic and ecological relevance. This Thesis studies sHSPs from several woody species of economic interest. The most prominent components, namely cytosolic class I sHSPs, have been identified and characterized, either by cDNA library screening (walnut, cherry) or by searching the complete genomic sequence (poplar). Through heterologous bacterial expression, we analyzed the in vivo protective effects of selected components against abiotic stress. Our results demonstrate that sHSP-CI proteins: (i) protect E. coli cells against different stressful conditions, alone or combined; (ii) stabilize cell membranes; (iii) improve the production of other recombinant proteins with commercial interest. The effects of CsHSP17.5-CI overexpression have also been studied in hybrid poplar. Interestingly, the accumulation of this protein does not have any appreciable phenotypic effects under normal growth conditions. However, the transgenic poplar lines showed enhanced net growth and reduced injury under heat-stress conditions compared to vector controls. Biochemical analysis of leaf extracts revealed that important enzyme activities were more protected in such lines against heat-induced inactivation than in control lines, lending further support to the chaperone mode of action proposed for the sHSP family. All transgenic lines showed improved in vitro and ex vitro performance (calli biomass, bud induction, shoot regeneration) compared to controls, even in the absence of thermal stress. Besides providing new insights on the protective role of HSP-CI proteins, our results bolster the notion that heat stress tolerance can be readily manipulated in trees through genetic engineering. The applied value of these results is evident, especially under a global warming scenario.