Periodontal disease, or periodontitis, is a problem that many people suffer from, and no treatment can eliminate without any doubt the issue. Periodontal disease causes the breakdown of periodontal structure, leading to a search on creating structures capable of facilitating periodontal tissue regeneration. In this master's thesis, the approach to overcome the problem was to manufacture fibrous membranes through the electrospinning technique to mimic the extracellular matrix. Electrospun membranes of poly(caprolactone) (PCL) and PCL loaded with natural products such as aloe vera (AV) and curcumin (CUR), were produced, to provide an antibacterial effect, using benign solvents, as acetic and formic acids. Electrospun membranes of PCL, PCL/AV and PCL/CUR were successfully produced, with a diameter range of fibers of 120-180 nm, having been observed in some of them, the formation of nano-nets between the fibers, reaching diameters of 25-45 nm. The fibers were analyzed using Scanning Electron Microscope (SEM). The loading of aloe vera and curcumin in the fibers was confirmed using Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR). Wettability tests and antibacterial assay (E. coli and S. Aureus) were performed in every produced membrane. The study demonstrated that aloe vera and curcumin can be successfully loaded into a PCL membrane without changing the wettability of the membrane. The diffusion disks method, that quantifies the diameter of inhibition halo, it was not detected any antibacterial activity with the loading of aloe vera and curcumin. Overall, PCL membranes loaded with the different content percentages of aloe vera and curcumin were produced successfully, with nanostructure mimicking the extracellular matrices found in the periodontal structure. From a morphological perspective, these membranes are promising scaffolds for tissue engineering. The possibility of controlling the production of nano-net and a more systematic study of these membranes' antibacterial activity thus appears as aspects of great interest for the continuation of the work developed. A doença periodontal, ou periodontite, é um problema de que muitas pessoas sofrem e não existe um tratamento que elimine eficazmente o problema. A periodontite é uma doença que provoca o colapso da estrutura periodontal, levando à necessidade de criação de estruturas capazes de facilitar a regeneração do tecido danificado. Nesta dissertação de mestrado a abordagem para ultrapassar o problema foi fabricar membranas fibrosas através da técnica de eletrofiação, para mimetizar a matriz extracelular, usando poli(caprolactona) (PCL) à qual se adicionaram produtos naturais, como aloé vera (AV) e curcumina (CUR) para fornecer um efeito antibacteriano, e recorrendo a solventes não tóxicos, como os ácidos acético e fórmico. As membranas eletrofiadas de PCL, PCL / AV e PCL / CUR foram produzidas com sucesso, com uma gama de diâmetros de fibras de 120-180 nm, tendo-se observado, em algumas delas, a formação de nano-teias entre as fibras, atingindo diâmetros entre 25-35 nm. As fibras foram analisadas em Microscópio Eletrónico de Varrimento e a presença de curcumina e aloé vera nas fibras foi confirmada por espectroscopia de Infravermelho por transformada de Fourier em modo de reflexão total atenuada (ATR-FTIR). Testes de molhabilidade e testes antibacterianos (E. coli e S. Aureus) foram realizados em todas as membranas produzidas. O estudo demonstrou que a curcumina e a aloé vera podem ser carregadas com sucesso em membranas de PCL sem alterar a molhabilidade da membrana. O método de difusão em disco, que quantifica os diâmetros dos halos de inibição, não permitiu identificar atividade antibacteriana quer da curcumina quer da aloé vera. No geral, foram produzidas com sucesso membranas de PCL, de PCL/AV e de PCL/CUR com diferentes concentrações de produto natural, com microestruturas mimetizando, à escala nanométrica, as matrizes extracelulares encontradas na estrutura periodontal. Sob o ponto de vista morfológico estas membranas apresentam-se como promissores scaffolds para engenharia de tecidos. A possibilidade de controlar a produção das nano-teias e o estudo mais sistemático da atividade antibacteriana destas membranas surgem assim como vertentes de grande interesse para a continuação do trabalho desenvolvido. Mestrado em Materiais e Dispositivos Biomédicos