12 results on '"Roubinet B"'
Search Results
2. MCT1 lactate transporter blockade re-invigorates anti-tumor immunity through metabolic rewiring of dendritic cells in melanoma.
- Author
-
Niveau C, Cettour-Cave M, Mouret S, Sosa Cuevas E, Pezet M, Roubinet B, Gil H, De Fraipont F, Landemarre L, Charles J, Saas P, and Aspord C
- Subjects
- Humans, Cell Line, Tumor, TOR Serine-Threonine Kinases metabolism, Polysaccharides metabolism, Tumor Escape, Symporters, Dendritic Cells immunology, Dendritic Cells metabolism, Melanoma immunology, Melanoma metabolism, Melanoma pathology, Monocarboxylic Acid Transporters metabolism
- Abstract
Dendritic cells (DC) are key players in antitumor immune responses. Tumors exploit their plasticity to escape immune control; their aberrant surface carbohydrate patterns (e.g., glycans) shape immune responses through lectin binding, and manipulate the metabolism of immune cells, including DCs to alter their function and escape immune surveillance. DC metabolic reprogramming could induce immune subversion and tumor immune escape. Here we explore metabolic features of human DC subsets (cDC2s, cDC1s, pDCs) in melanoma, at single cell level, using the flow cytometry-based SCENITH (Single-Cell ENergetIc metabolism by profiling Translation inHibition) method. We demonstrate that circulating and tumor-infiltrating DC subsets from melanoma patients are characterized by altered metabolism, which is linked to their activation status and profile of immune checkpoint expression. This altered metabolism influences their function and affects patient clinical outcome. Notably, melanoma tumor cells directly remodel the metabolic profile of DC subsets, in a glycan-dependent manner. Strikingly, modulation of the mTOR/AMPK-dependent metabolic pathways and/or the MCT1 lactate transporter rescue cDC2s and cDC1s from skewing by tumor-derived glycans, Sialyl-Tn antigen and Fucose, and restore anti-tumor T-cell fitness. Our findings thus open the way for appropriate tuning of metabolic pathways to rescue DCs from tumor hijacking and restore potent antitumor responses., Competing Interests: Competing interests: The authors declare no competing interests., (© 2025. The Author(s).)
- Published
- 2025
- Full Text
- View/download PDF
3. Gal f -Specific Neolectins: Towards Promising Diagnostic Tools.
- Author
-
Seničar M, Roubinet B, Lafite P, Legentil L, Ferrières V, Landemarre L, and Daniellou R
- Subjects
- Animals, Aspergillus metabolism, Aspergillus genetics, Glycoproteins chemistry, Glycoproteins metabolism, Lectins metabolism, Lectins chemistry, Mannans chemistry, Serum Albumin, Bovine chemistry, Galactose analogs & derivatives, Galactose metabolism, Galactose chemistry
- Abstract
In the absence of naturally available galactofuranose-specific lectin, we report herein the bioengineering of Gal f NeoLect, from the first cloned wild-type galactofuranosidase ( Streptomyces sp. strain JHA19), which recognises and binds a single monosaccharide that is only related to nonmammalian species, usually pathogenic microorganisms. We kinetically characterised the Gal f NeoLect to confirm attenuation of hydrolytic activity and used competitive inhibition assay, with close structural analogues of Gal f , to show that it conserved interaction with its original substrate. We synthetised the bovine serum albumin-based neoglycoprotein (Gal f NGP), carrying the multivalent Gal f units, as a suitable ligand and high-avidity system for the recognition of Gal f NeoLect which we successfully tested directly with the galactomannan spores of Aspergillus brasiliensis (ATCC 16404). Altogether, our results indicate that Gal f NeoLect has the necessary versatility and plasticity to be used in both research and diagnostic lectin-based applications.
- Published
- 2024
- Full Text
- View/download PDF
4. Melanoma tumour-derived glycans hijack dendritic cell subsets through C-type lectin receptor binding.
- Author
-
Niveau C, Sosa Cuevas E, Roubinet B, Pezet M, Thépaut M, Mouret S, Charles J, Fieschi F, Landemarre L, Chaperot L, Saas P, and Aspord C
- Subjects
- Male, Humans, Dendritic Cells, Glycoproteins, Toll-Like Receptors metabolism, Polysaccharides metabolism, Lectins, C-Type, Melanoma
- Abstract
Dendritic cell (DC) subsets play a crucial role in shaping anti-tumour immunity. Cancer escapes from the control immune system by hijacking DC functions. Yet, bases for such subversion are only partially understood. Tumour cells display aberrant glycan motifs on surface glycoproteins and glycolipids. Such carbohydrate patterns can be sensed by DCs through C-type lectin receptors (CLRs) that are critical to shape and orientate immune responses. We recently demonstrated that melanoma tumour cells harboured an aberrant 'glyco-code,' and that circulating and tumour-infiltrating DCs from melanoma patients displayed major perturbations in their CLR profiles. To decipher whether melanoma, through aberrant glycan patterns, may exploit CLR pathways to mislead DCs and evade immune control, we explored the impact of glycan motifs aberrantly found in melanoma (neoglycoproteins [NeoGP] functionalised with Gal, Man, GalNAc, s-Tn, fucose [Fuc] and GlcNAc residues) on features of human DC subsets (cDC2s, cDC1s and pDCs). We examined the ability of glycans to bind to purified DCs, and assessed their impact on DC basal properties and functional features using flow cytometry, confocal microscopy and multiplex secreted protein analysis. DC subsets differentially bound and internalised NeoGP depending on the nature of the glycan. Strikingly, Fuc directly remodelled the expression of activation markers and immune checkpoints, as well as the cytokine/chemokine secretion profile of DC subsets. NeoGP interfered with Toll like receptor (TLR)-signalling and pre-conditioned DCs to exhibit an altered response to subsequent TLR stimulation, dampening antitumor mediators while triggering pro-tumoral factors. We further demonstrated that DC subsets can bind NeoGP through CLRs, and identified GalNAc/MGL and s-Tn/ C-type lectin-like receptor 2 (CLEC2) as potential candidates. Moreover, DC dysfunction induced by tumour-associated carbohydrate molecules may be reversed by interfering with the glycan/CLR axis. These findings revealed the glycan/CLR axis as a promising checkpoint to exploit in order to reshape potent antitumor immunity while impeding immunosuppressive pathways triggered by aberrant tumour glycosylation patterns. This may rescue DCs from tumour hijacking and improve clinical success in cancer patients., (© 2023 John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
5. ROMP-based Glycopolymers with High Affinity for Mannose-Binding Lectins.
- Author
-
Gonnot C, Scalabrini M, Roubinet B, Ziane C, Boeda F, Deniaud D, Landemarre L, Gouin SG, Fontaine L, and Montembault V
- Subjects
- Polymerization, Concanavalin A metabolism, Polyethylene Glycols, Mannose-Binding Lectins, Polymers pharmacology, Polymers metabolism
- Abstract
Well-defined, highly reactive poly(norbornenyl azlactone)s of controlled length (number-average degree of polymerization D P n ¯ = 10 to 1,000) were made by ring-opening metathesis polymerization (ROMP) of pure exo -norbornenyl azlactone. These were converted into glycopolymers using a facile postpolymerization modification (PPM) strategy based on click aminolysis of azlactone side groups by amino-functionalized glycosides. Pegylated mannoside, heptyl-mannoside, and pegylated glucoside were used in the PPM. Binding inhibition of the resulting glycopolymers was evaluated against a lectin panel (Bc2L-A, FimH, langerin, DC-SIGN, ConA). Inhibition profiles depended on the sugars and the degrees of polymerization. Glycopolymers from pegylated-mannoside-functionalized polynorbornene, with D P n ¯ = 100, showed strong binding inhibition, with subnanomolar range inhibitory concentrations (IC
50 s). Polymers surpassed the inhibitory potential of their monovalent analogues by four to five orders of magnitude thanks to a multivalent (synergistic) effect. Sugar-functionalized poly(norbornenyl azlactone)s are therefore promising tools to study multivalent carbohydrate-lectin interactions and for applications against lectin-promoted bacterial/viral binding to host cells.- Published
- 2023
- Full Text
- View/download PDF
6. Glycofullerene-AuNPs as multivalent ligands of DC-SIGN and bacterial lectin FimH: tuning nanoparticle size and ligand density.
- Author
-
Wang T, Jimmidi R, Roubinet B, Landemarre L, and Vincent SP
- Subjects
- Ligands, Escherichia coli metabolism, Lectins, C-Type, Carbohydrates, Gold metabolism, Metal Nanoparticles
- Abstract
Glycoclusters have been extensively investigated for their inhibition of multivalent carbohydrate-protein interactions, which is often the first step for bacterial and viral pathogens to selectively bind their host cells. Glycoclusters may thus prevent infections by blocking the microbe attachment onto the host cell surface. The potency of multivalent carbohydrate-protein interactions is largely derived from the spatial arrangement of the ligand and the nature and flexibility of the linker. The size of the glycocluster may also have a dramatic impact on the multivalent effect. The main objective of this study is to provide a systematic comparison of gold nanoparticles of three representative sizes and ligand densities at their surface. Therefore, AuNPs with diameters of 20, 60, and 100 nm were coupled either to a monomeric D-mannoside or a decameric glycofullerene. Lectin DC-SIGN and lectin FimH were selected as representative models of viral and bacterial infections, respectively. We also report the synthesis of a hetero-cluster built from 20 nm AuNPs and a mannose-derived glycofullerene and monomeric fucosides. All final glycoAuNPs were evaluated as ligands of DC-SIGN- and FimH using the GlycoDiag LectProfile technology. This investigation revealed that the 20 nm AuNPs bearing glycofullerenes with short linker are the most potent binders of both DC-SIGN and FimH. Moreover, the hetero-glycoAuNPs showed an enhanced selectivity and inhibitory ability towards DC-SIGN. Hemagglutination inhibition assays using uropathogenic E. coli corroborated the in vitro assays. Overall, these results showed smaller glycofullerene-AuNPs (20 nm) exhibited the best potential as anti-adhesive materials for a variety of bacterial and viral pathogens.
- Published
- 2023
- Full Text
- View/download PDF
7. Structural insights into a cooperative switch between one and two FimH bacterial adhesins binding pauci- and high-mannose type N-glycan receptors.
- Author
-
Krammer EM, Bridot C, Serna S, Echeverria B, Semwal S, Roubinet B, van Noort K, Wilbers RHP, Bourenkov G, de Ruyck J, Landemarre L, Reichardt N, and Bouckaert J
- Subjects
- Humans, Bacterial Adhesion, Escherichia coli metabolism, Glycoproteins metabolism, Mannose metabolism, Polysaccharides metabolism, Protein Binding, Protein Structure, Quaternary, Molecular Docking Simulation, Adhesins, Escherichia coli chemistry, Adhesins, Escherichia coli metabolism, Mannose Receptor chemistry, Mannose Receptor metabolism, Models, Molecular
- Abstract
The FimH type-1 fimbrial adhesin allows pathogenic Escherichia coli to adhere to glycoproteins in the epithelial linings of human bladder and intestinal tract, by using multiple fimbriae simultaneously. Pauci- and high-mannose type N-glycans are natural FimH receptors on those glycoproteins. Oligomannose-3 and oligomannose-5 bind with the highest affinity to FimH by using the same Manα1,3Man branch. Oligomannose-6 is generated from oligomannose-5 in the next step of the biogenesis of high-mannose N-glycans, by the transfer of a mannose in α1,2-linkage onto this branch. Using serial crystallography and by measuring the kinetics of binding, we demonstrate that shielding the high-affinity epitope drives the binding of multiple FimH molecules. First, we profiled FimH glycan binding on a microarray containing paucimannosidic N-glycans and in a FimH LEctPROFILE assay. To make the transition to oligomannose-6, we measured the kinetics of FimH binding using paucimannosidic N-glycans, glycoproteins and all four α-dimannosides conjugated to bovine serum albumin. Equimolar mixed interfaces of the dimannosides present in oligomannose-6 and molecular dynamics simulations suggest a positive cooperativity in the bivalent binding of Manα1,3Manα1 and Manα1,6Manα1 dimannosides. The binding of core α1,6-fucosylated oligomannose-3 in cocrystals of FimH is monovalent but interestingly the GlcNAc1-Fuc moiety retains highly flexibility. In cocrystals with oligomannose-6, two FimH bacterial adhesins bind the Manα1,3Manα1 and Manα1,6Manα1 endings of the second trimannose core (A-4'-B). This cooperative switch towards bivalent binding appears sustainable beyond a molar excess of oligomannose-6. Our findings provide important novel structural insights for the design of multivalent FimH antagonists that bind with positive cooperativity., Competing Interests: Conflict of interest N.-C. R. is CEO and shareholder of Asparia Glycomics S.L., a company commercializing glycoscience products and services., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
8. The melanoma tumor glyco-code impacts human dendritic cells' functionality and dictates clinical outcomes.
- Author
-
Sosa Cuevas E, Roubinet B, Mouret S, Thépaut M, de Fraipont F, Charles J, Fieschi F, Landemarre L, Chaperot L, and Aspord C
- Subjects
- Male, Humans, Lectins, Glycosylation, Polysaccharides, Dendritic Cells, Melanoma pathology
- Abstract
Subversion of immunity is a hallmark of cancer development. Dendritic cells (DCs) are strategic immune cells triggering anti-tumor immune responses, but tumor cells exploit their versatility to subvert their functions. Tumor cells harbor unusual glycosylation patterns, which can be sensed through glycan-binding receptors (lectins) expressed by immune cells that are crucial for DCs to shape and orientate antitumor immunity. Yet, the global tumor glyco-code and its impact on immunity has not been explored in melanoma. To decrypt the potential link between aberrant glycosylation patterns and immune evasion in melanoma, we investigated the melanoma tumor glyco-code through the GLYcoPROFILE™ methodology (lectin arrays), and depicted its impact on patients' clinical outcome and DC subsets' functionality. Specific glycan patterns correlated with clinical outcome of melanoma patients, GlcNAc, NeuAc, TF-Ag and Fuc motifs being associated with poor outcome, whereas Man and Glc residues elicited better survival. Strikingly, tumor cells differentially impacting cytokine production by DCs harbored distinct glyco-profiles. GlcNAc exhibited a negative influence on cDC2s, whereas Fuc and Gal displayed inhibitory impacts on cDC1s and pDCs. We further identified potential booster glycans for cDC1s and pDCs. Targeting specific glycans on melanoma tumor cells restored DCs' functionality. The tumor glyco-code was also linked to the nature of the immune infiltrate. This study unveils the impact of melanoma glycan patterns on immunity, and paves the way for innovative therapeutic options. Glycans/lectins interactions arise as promising immune checkpoints to rescue DCs from tumor' hijacking to reshape antitumor immunity and inhibit immunosuppressive circuits triggered by aberrant tumor glycosylation., Competing Interests: Authors BR and LL were employed by company GLYcoDiag. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Sosa Cuevas, Roubinet, Mouret, Thépaut, de Fraipont, Charles, Fieschi, Landemarre, Chaperot and Aspord.)
- Published
- 2023
- Full Text
- View/download PDF
9. Insightful Improvement in the Design of Potent Uropathogenic E. coli FimH Antagonists.
- Author
-
Mousavifar L, Sarshar M, Bridot C, Scribano D, Ambrosi C, Palamara AT, Vergoten G, Roubinet B, Landemarre L, Bouckaert J, and Roy R
- Abstract
Selective antiadhesion antagonists of Uropathogenic Escherichia coli (UPEC) type-1 Fimbrial adhesin (FimH) are attractive alternatives for antibiotic therapies and prophylaxes against acute or recurrent urinary tract infections (UTIs) caused by UPECs. A rational small library of FimH antagonists based on previously described C -linked allyl α-D-mannopyranoside was synthesized using Heck cross-coupling reaction using a series of iodoaryl derivatives. This work reports two new members of FimH antagonist amongst the above family with sub nanomolar affinity. The resulting hydrophobic aglycones, including constrained alkene and aryl groups, were designed to provide additional favorable binding interactions with the so-called FimH "tyrosine gate". The newly synthesized C -linked glycomimetic antagonists, having a hydrolytically stable anomeric linkage, exhibited improved binding when compared to previously published analogs, as demonstrated by affinity measurement through interactions by FimH lectin. The crystal structure of FimH co-crystallized with one of the nanomolar antagonists revealed the binding mode of this inhibitor into the active site of the tyrosine gate. In addition, selected mannopyranoside constructs neither affected bacterial growth or cell viability nor interfered with antibiotic activity. C -linked mannoside antagonists were effective in decreasing bacterial adhesion to human bladder epithelial cells (HTB-9). Therefore, these molecules constituted additional therapeutic candidates' worth further development in the search for potent anti-adhesive drugs against infections caused by UPEC.
- Published
- 2023
- Full Text
- View/download PDF
10. Lectin Analysis of SARS-CoV-2-Positive Nasopharyngeal Samples Using GLYcoPROFILE ® Technology Platform.
- Author
-
Seničar M, Roubinet B, Daniellou R, Prazuck T, and Landemarre L
- Abstract
Nasopharyngeal samples are currently accepted as the standard diagnostic samples for nucleic acid amplification testing and antigenic testing for the SARS-CoV-2 virus. In addition to the diagnostic capacity of SARS-CoV-2-positive crude nasopharyngeal samples, their qualitative potential for direct glycan-specific analysis, in order to uncover unique glycol profiles, was assessed. In this study we provide glycan characterization of SARS-CoV-2-positive and -negative nasopharyngeal samples directly from lectin interactions. Although with limited throughput, this study evaluated the clinical sensitivity and specificity of the GLYcoPROFILE® technology platformon45crude nasopharyngeal samples collected between November 2020 and April 2022. Each GLYcoPROFILE® of 39 SARS-CoV-2-positive samples was compared toglycoprofiling on a panel of 10 selected lectins and the results were paralleled with SARS-CoV-2-negative samples’ results. The GLYcoPROFILE® showed a clear distinction between positive and negative samples with WFA, GSL-II, PHA-L (GlcNAc-specific) and BPA (GalNAc-specific) highlighted as relevant lectins in SARS-CoV-2-positive samples. In addition, a significant, positive statistical correlation was found for these lectins (p < 0.01).
- Published
- 2022
- Full Text
- View/download PDF
11. Unique CLR expression patterns on circulating and tumor-infiltrating DC subsets correlated with clinical outcome in melanoma patients.
- Author
-
Sosa Cuevas E, Valladeau-Guilemond J, Mouret S, Roubinet B, de Fraipont F, Landemarre L, Charles J, Bendriss-Vermare N, Chaperot L, and Aspord C
- Subjects
- Male, Humans, Lectins, C-Type metabolism, Membrane Glycoproteins metabolism, Polysaccharides, Dendritic Cells, Melanoma metabolism
- Abstract
Subversion of immunity by tumors is a crucial step for their development. Dendritic cells (DCs) are strategic immune cells that orchestrate anti-tumor immune responses but display altered functions in cancer. The bases for such DCs' hijacking are not fully understood. Tumor cells harbor unusual glycosylation patterns of surface glycoproteins and glycolipids. DCs express glycan-binding receptors, named C-type lectin receptors (CLR), allowing them to sense changes in glycan signature of their environment, and subsequently trigger a response. Recognition of tumor glycans by CLRs is crucial for DCs to shape antitumor immunity, and decisive in the orientation of the response. Yet the status of the CLR machinery on DCs in cancer, especially melanoma, remained largely unknown. We explored CLR expression patterns on circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs of melanoma patients, assessed their clinical relevance, and further depicted the correlations between CLR expression profiles and DCs' features. For the first time, we highlighted that the CLR repertoire of circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs was strongly perturbed in melanoma patients, with modulation of DCIR, CLEC-12α and NKp44 on circulating DCs, and perturbation of Dectin-1, CD206, DEC205, DC-SIGN and CLEC-9α on tumor-infiltrating DCs. Furthermore, melanoma tumor cells directly altered CLR expression profiles of healthy DC subsets, and this was associated with specific glycan patterns (Man, Fuc, GlcNAc) that may interact with DCs through CLR molecules. Notably, specific CLR expression profiles on DC subsets correlated with unique DCs' activation status and functionality and were associated with clinical outcome of melanoma patients. Higher proportions of DCIR-, DEC205-, CLEC-12α-expressing cDCs were linked with a better survival, whereas elevated proportions of CD206-, Dectin1-expressing cDCs and NKp44-expressing pDCs were associated with a poor outcome. Thus, melanoma tumor may shape DCs' features by exploiting the plasticity of the CLR machinery. Our study revealed that melanoma manipulates CLR pathways to hijack DC subsets and escape from immune control. It further paved the way to exploit glycan-lectin interactions for the design of innovative therapeutic strategies, which exploit DCs' potentialities while avoiding hijacking by tumor, to properly reshape anti-tumor immunity by manipulating the CLR machinery., Competing Interests: Authors BR and LL were employed by company GLYcoDiag. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Sosa Cuevas, Valladeau-Guilemond, Mouret, Roubinet, de Fraipont, Landemarre, Charles, Bendriss-Vermare, Chaperot and Aspord.)
- Published
- 2022
- Full Text
- View/download PDF
12. The myrosinase-glucosinolate system to generate neoglycoproteins: A case study targeting mannose binding lectins.
- Author
-
Cutolo G, Didak B, Tomas J, Roubinet B, Lafite P, Nehmé R, Schuler M, Landemarre L, and Tatibouët A
- Subjects
- Glucosinolates, Glycoproteins metabolism, Glycoside Hydrolases, Humans, Lectins chemistry, Serum Albumin, Bovine metabolism, Mannose metabolism, Mannose-Binding Lectins
- Abstract
A convenient strategy for a 'one-pot' synthesis of neoglycoproteins (NGP) was developed using the myrosinase-glucosinolate couple, a natural enzyme-substrate system. This enzymatic reaction allowed us to generate an isothiocyanate in situ which then reacted with the lysine residues of bovine serum albumin protein (BSA) to produce multivalent neoglycoproteins. Using two models, glucomoringin which is a natural glucosinolate bearing a l-rhamnose unit, and an artificial glucosinolate specifically designed for mannose type lectins, an average of up to 17.8 and 28.7 carbohydrate residues could be respectively grafted onto the BSA protein. This process is comparable to commercial approaches using BSA-Man
C without the disadvantage of handling harmful chemical reagents. Lectin binding screening (GLYcoPROFILE®) showed that among all NGPs synthesized, BSA-Man 16 gave similar and in some cases better affinities in comparison with commercial BSA-Manc towards various mannose-specific lectins., (Copyright © 2022 Elsevier Ltd. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.