6 results on '"Rodelas, B."'
Search Results
2. Design and Validation of Primer Sets for the Detection and Quantification of Antibiotic Resistance Genes in Environmental Samples by Quantitative PCR.
- Author
-
Perez-Bou L, Gonzalez-Martinez A, Cabrera JJ, Juarez-Jimenez B, Rodelas B, Gonzalez-Lopez J, and Correa-Galeote D
- Subjects
- Drug Resistance, Bacterial genetics, Bacteria genetics, Bacteria drug effects, Bacteria isolation & purification, Bacteria classification, DNA Primers genetics, Real-Time Polymerase Chain Reaction methods, Wastewater microbiology, Genes, Bacterial, Anti-Bacterial Agents pharmacology
- Abstract
The high prevalence of antibiotic resistant bacteria (ARB) in several environments is a great concern threatening human health. Particularly, wastewater treatment plants (WWTP) become important contributors to the dissemination of ARB to receiving water bodies, due to the inefficient management or treatment of highly antibiotic-concentrated wastewaters. Hence, it is vital to develop molecular tools that allow proper monitoring of the genes encoding resistances to these important therapeutic compounds (antibiotic resistant genes, ARGs). For an accurate quantification of ARGs, there is a need for sensitive and robust qPCR assays supported by a good design of primers and validated protocols. In this study, eleven relevant ARGs were selected as targets, including aadA and aadB (conferring resistance to aminoglycosides); ampC, bla
TEM , blaSHV , and mecA (resistance to beta-lactams); dfrA1 (resistance to trimethoprim); ermB (resistance to macrolides); fosA (resistance to fosfomycin); qnrS (resistance to quinolones); and tetA(A) (resistance to tetracyclines). The in silico design of the new primer sets was performed based on the alignment of all the sequences of the target ARGs (orthology grade > 70%) deposited in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, allowing higher coverages of the ARGs' biodiversity than those of several primers described to date. The adequate design and performance of the new molecular tools were validated in six samples, retrieved from both natural and engineered environments related to wastewater treatment. The hallmarks of the optimized qPCR assays were high amplification efficiency (> 90%), good linearity of the standard curve (R2 > 0.980), repeatability and reproducibility across experiments, and a wide linear dynamic range. The new primer sets and methodology described here are valuable tools to upgrade the monitorization of the abundance and emergence of the targeted ARGs by qPCR in WWTPs and related environments., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
3. Linking the shifts in the metabolically active microbiota in a UASB and hybrid anaerobic-aerobic bioreactor for swine wastewater treatment.
- Author
-
Ochoa-Hernández ME, Reynoso-Varela A, Martínez-Córdova LR, Rodelas B, Durán U, Alcántara-Hernández RJ, Serrano-Palacios D, and Calderón K
- Subjects
- Animals, Swine, Wastewater, Sewage chemistry, Waste Disposal, Fluid, Anaerobiosis, RNA, Ribosomal, 16S genetics, DNA, Complementary, Bioreactors microbiology, Chlorobi genetics, Microbiota, Water Purification
- Abstract
Due to the high concentration of pollutants, swine wastewater needs to be treated prior to disposal. The combination of anaerobic and aerobic technologies in one hybrid system allows to obtain higher removal efficiencies compared to those achieved via conventional biological treatment, and the performance of a hybrid system depends on the microbial community in the bioreactor. Here, we evaluated the community assembly of an anaerobic-aerobic hybrid reactor for swine wastewater treatment. Sequencing of partial 16S rRNA coding genes was performed using Illumina from DNA and retrotranscribed RNA templates (cDNA) extracted from samples from both sections of the hybrid system and from a UASB bioreactor fed with the same swine wastewater influent. Proteobacteria and Firmicutes were the dominant phyla and play a key role in anaerobic fermentation, followed by Methanosaeta and Methanobacterium. Several differences were found in the relative abundances of some genera between the DNA and cDNA samples, indicating an increase in the diversity of the metabolically active community, highlighting Chlorobaculum, Cladimonas, Turicibacter and Clostridium senso stricto. Nitrifying bacteria were more abundant in the hybrid bioreactor. Beta diversity analysis revealed that the microbial community structure significantly differed among the samples (p < 0.05) and between both anaerobic treatments. The main predicted metabolic pathways were the biosynthesis of amino acids and the formation of antibiotics. Also, the metabolism of C5-branched dibasic acid, Vit B5 and CoA, exhibited an important relationship with the main nitrogen-removing microorganisms. The anaerobic-aerobic hybrid bioreactor showed a higher ammonia removal rate compared to the conventional UASB system. However, further research and adjustments are needed to completely remove nitrogen from wastewater., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
4. Structure of fungal communities in sequencing batch reactors operated at different salinities for the selection of triacylglyceride-producers from a fish-canning lipid-rich waste stream.
- Author
-
Correa-Galeote D, Argiz L, Mosquera-Corral A, Del Rio AV, Juarez-Jimenez B, Gonzalez-Lopez J, and Rodelas B
- Subjects
- Bioreactors microbiology, Sewage microbiology, Waste Disposal, Fluid, Mycobiome, Polyhydroxyalkanoates
- Abstract
Oleaginous fungi natively accumulate large amounts of triacylglycerides (TAG), widely used as precursors for sustainable biodiesel production. However, little attention has been paid to the diversity and roles of fungal mixed microbial cultures (MMCs) in sequencing batch reactors (SBR). In this study, a lipid-rich stream produced in the fish-canning industry was used as a substrate in two laboratory-scale SBRs operated under the feast/famine (F/F) regime to enrich microorganisms with high TAG-storage ability, under two different concentrations of NaCl (SBR-N: 0.5 g/L; SBR-S: 10 g/L). The size of the fungal community in the enriched activated sludge (EAS) was analyzed using 18S rRNA-based qPCR, and the fungal community structure was determined by Illumina sequencing. The different selective pressures (feeding strategy and control of pH) implemented in the enrichment SBRs throughout operation increased the abundance of total fungi. In general, there was an enrichment of genera previously identified as TAG-accumulating fungi (Apiotrichum, Candida, Cutaneotrichosporon, Geotrichum, Haglerozyma, Metarhizium, Mortierella, Saccharomycopsis, and Yarrowia) in both SBRs. However, the observed increase of their relative abundances throughout operation was not significantly linked to a higher TAG accumulation., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
5. Simplified engineering design towards a competitive lipid-rich effluents valorization.
- Author
-
Argiz L, Val Del Río Á, Correa-Galeote D, Rodelas B, and Mosquera-Corral A
- Subjects
- Carbon, Fatty Acids, Volatile, Industrial Waste, Bioreactors microbiology, Polyhydroxyalkanoates
- Abstract
Medium- and long-chain fatty acids and glycerol contained in the oily fraction of many food-industry effluents are excellent candidates to produce biobased high-value triacylglycerides (TAGs) and polyhydroxyalkanoates (PHAs). The typical process configuration for TAGs recovery from lipid-rich streams always includes two steps (culture enrichment plus storage compounds accumulation) whereas, for PHAs production, an additional pretreatment of the substrate for the obtainment of soluble volatile fatty acids (VFAs) is required. To simplify the process, substrate hydrolysis, culture enrichment, and accumulation (TAG and PHA storage) were coupled here in a single sequencing batch reactor (SBR) operated under the double growth limitation strategy (DGL) and fed in pulses with industrial waste fish oil during the whole feast phase. When the SBR was operated in 12 h cycles, it was reached up to 51 wt % biopolymers after only 6 h of feast (TAG:PHA ratio of 50:51; 0.423 Cmmol
BIOP /CmmolS ). Daily storage compound production was observed to be over 25% higher than the reached when enrichment and accumulation stages were carried in separate operational units. Increasing the feast phase length from 6 to 12 h (18 h cycle) negatively affected the DGL strategy performance and hence system storage capacity, which was recovered after also extending the famine phase in the same proportion (24 h cycle). Besides, the carbon influx during the feast phase was identified as a key operational parameter controlling storage compounds production and, together with the C/N ratio, culture selection. The different cycle configurations tested clearly modulated the total fungal abundances without no significant differences in the size of the bacterial populations. Several PHA and TAG producers were found in the mixed culture although the PHA and TAG productions were poorly associated with the increased relative abundances (RAs) of specific operational taxonomic units (OTUs)., (Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
6. Dynamics of PHA-Accumulating Bacterial Communities Fed with Lipid-Rich Liquid Effluents from Fish-Canning Industries.
- Author
-
Correa-Galeote D, Argiz L, Val Del Rio A, Mosquera-Corral A, Juarez-Jimenez B, Gonzalez-Lopez J, and Rodelas B
- Abstract
The biosynthesis of polyhydroxyalkanoates (PHAs) from industrial wastes by mixed microbial cultures (MMCs) enriched in PHA-accumulating bacteria is a promising technology to replace petroleum-based plastics. However, the populations' dynamics in the PHA-accumulating MMCs are not well known. Therefore, the main objective of this study was to address the shifts in the size and structure of the bacterial communities in two lab-scale sequencing batch reactors (SBRs) fed with fish-canning effluents and operated under non-saline (SBR-N, 0.5 g NaCl/L) or saline (SBR-S, 10 g NaCl/L) conditions, by using a combination of quantitative PCR and Illumina sequencing of bacterial 16S rRNA genes. A double growth limitation (DGL) strategy, in which nitrogen availability was limited and uncoupled to carbon addition, strongly modulated the relative abundances of the PHA-accumulating bacteria, leading to an increase in the accumulation of PHAs, independently of the saline conditions (average 9.04 wt% and 11.69 wt%, maximum yields 22.03 wt% and 26.33% SBR-N and SBR-S, respectively). On the other hand, no correlations were found among the PHAs accumulation yields and the absolute abundances of total Bacteria , which decreased through time in the SBR-N and did not present statistical differences in the SBR-S. Acinetobacter , Calothrix , Dyella , Flavobacterium , Novosphingobium , Qipengyuania , and Tsukamurella were key PHA-accumulating genera in both SBRs under the DGL strategy, which was revealed as a successful tool to obtain a PHA-enriched MMC using fish-canning effluents.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.