15 results on '"Reuss, DE"'
Search Results
2. Heterogeneity of DNA methylation profiles and copy number alterations in 10782 adult-type glioblastomas, IDH-wildtype.
- Author
-
Reuss DE, Schrimpf D, Cherkezov A, Suwala AK, Lausová T, Snuderl M, Capper D, Sill M, Jones DTW, Pfister SM, Sahm F, and von Deimling A
- Abstract
The morphological patterns leading to the diagnosis of glioblastoma may also commonly be observed in several other distinct tumor entities, which can result in a mixed bag of tumors subsumed under this diagnosis. The 2021 WHO Classification of CNS Tumors has separated several of these entities from the diagnosis of glioblastoma, IDH-wildtype. This study determines the DNA methylation classes most likely receiving the diagnosis glioblastoma, IDH wildtype according to the definition by the WHO 2021 Classification and provides comparative copy number analyses. We identified 10782 methylome datasets uploaded to the web page www.molecularneuropathology.org with a calibrated score of ≥0.9 by the Heidelberg Brain Tumor Classifier version v12.8. These methylation classes were characterized by the diagnosis glioblastoma being the most frequent classification encountered in each of the classes according to the WHO 2021 definition. Further, methylation classes selected for this study predominantly contained adult patients. Unsupervised clustering confirmed the presence of nine methylation classes containing tumors most likely receiving the diagnosis glioblastoma, IDH-wildtype according to the WHO 2021 definition. Copy number analysis and a focus on genes with typical numerical alterations in glioblastoma revealed clear differences between the nine methylation classes. Although great progress in diagnostic precision has been achieved over the last decade, our data clearly demonstrate that glioblastoma, IDH-wildtype still is a heterogeneous group in need of further stratification.
- Published
- 2024
- Full Text
- View/download PDF
3. Genetical and epigenetical profiling identifies two subgroups of pineal parenchymal tumors of intermediate differentiation (PPTID) with distinct molecular, histological and clinical characteristics.
- Author
-
Rahmanzade R, Pfaff E, Banan R, Sievers P, Suwala AK, Hinz F, Bogumil H, Cherkezov A, Kaan AF, Schrimpf D, Friedel D, Göbel K, Keller F, Saenz-Sardà X, Lossos A, Sill M, Witt O, Sakowitz OW, Korshunov A, Reuss DE, Etminan N, Unterberg A, Ratliff M, Herold-Mende C, Wick W, Pfister SM, von Deimling A, Jones DTW, and Sahm F
- Subjects
- Humans, Pinealoma genetics, Pinealoma pathology, Pineal Gland pathology, Brain Neoplasms genetics, Brain Neoplasms pathology
- Published
- 2023
- Full Text
- View/download PDF
4. Reference on copy number variations in pleomorphic xanthoastrocytoma: Implications for diagnostic approach.
- Author
-
Reuss DE, Schrimpf D, Stichel D, Ebrahimi A, Dampier C, Aldape K, Snuderl M, Capper D, Sill M, Jones DTW, Pfister SM, Sahm F, and von Deimling A
- Abstract
Pleomorphic xanthoastrocytoma (PXA) poses a diagnostic challenge. The present study relies on methylation-based predictions and focuses on copy number variations (CNV) in PXA. We identified 551 tumors from patients having received the histologic diagnosis or differential diagnosis pleomorphic xanthoastrocytoma (PXA) uploaded to the web page www.molecularneuropathology.org. Of these 551 tumors, 165 received the prediction "methylation class (anaplastic) pleomorphic xanthoastrocytoma" with a calibrated score >=0.9 by the brain tumor classifier version v12.8 and, therefore, were defined the PXA reference set designated mcPXAref. In addition to these 165 mcPXAref, 767 other tumors received the prediction mcPXA with a calibrated score >=0.9 but without a histological PXA diagnosis. The total number of individual tumors predicted by histology and/or by methylome based classification as PXA, mcPXA or both was 1318, and these were designated the study cohort. The selection of a control cohort was guided by methylation-based predictions recurrently observed for the other 386/551 tumors diagnosed as histologic PXA. 131/386 received predictions for another entity besides PXA with a score >=0.9. Control tumors corresponding to the 11 most common other predictions were selected, adding up to 1100 reference cases. CNV profiles were calculated from all methylation datasets of the study and control cohorts. Special attention was given to the 7/10 signature, gene amplifications and homozygous deletion of CDKN2A/B. Comparison of CNV in the subsets of the study cohort and the control cohort were used to establish relations independent of histological diagnoses. Tumors in mcPXA were highly homogenous in regard to CNV alterations, irrespective of the histological diagnoses. The 7/10 signature commonly present in glioblastoma, IDH-wildtype, was present in 15-20% of mcPXA, whereas amplification of oncogenes (likewise common in glioblastoma) was very rare in mcPXA (<1%). In contrast, the histology-based PXA group exhibited high variance in regard to methylation classes as well as to CNVs. Our data add to the notion, that histologically defined PXA likely only represent a subset of the biological disease.
- Published
- 2023
- Full Text
- View/download PDF
5. Survey of NF1 inactivation by surrogate immunohistochemistry in ovarian carcinomas.
- Author
-
Köbel M, Yang RZ, Kang EY, Al-Shamma Z, Cook LS, Kinloch M, Carey MS, Hopkins L, Nelson GS, McManus KJ, Vizeacoumar FS, Vizeacoumar FJ, Freywald A, Fu Y, Reuss DE, and Lee CH
- Subjects
- Female, Humans, BRCA1 Protein, Neurofibromin 1 genetics, Immunohistochemistry, BRCA2 Protein, Carcinoma, Ovarian Epithelial, Ovarian Neoplasms pathology, Carcinoma, Endometrioid pathology, Cystadenocarcinoma, Serous pathology
- Abstract
Objective: Inhibition of the MAPK pathway by MEK inhibitors (MEKi) is currently a therapeutic standard in several cancer types, including ovarian low-grade serous carcinoma (LGSC). A common MAPK pathway alteration in tubo-ovarian high-grade serous carcinoma (HGSC) is the genomic inactivation of neurofibromin 1 (NF1). The primary objectives of our study were to survey the prevalence of NF1 inactivation in the principal ovarian carcinoma histotype as well as to evaluate its associations with clinico-pathological parameters and key biomarkers including BRCA1/2 status in HGSC., Methods: A recently commercialized NF1 antibody (clone NFC) was orthogonally validated on an automated immunohistochemistry (IHC) platform and IHC was performed on tissue microarrays containing 2140 ovarian carcinoma cases. Expression was interpreted as loss/inactivated (complete or subclonal) versus normal/retained., Results: Loss of NF1 expression was detected in 250/1429 (17.4%) HGSC including 11% with subclonal loss. Survival of NF1-inactivated HGSC patients was intermediate between favorable BRCA1/2 mutated HGSC and unfavorable CCNE1 high-level amplified HGSC. NF1 inactivation was mutually exclusive with CCNE1 high-level amplifications, co-occurred with RB1 loss and occurred at similar frequencies in BRCA1/2 mutated versus wild-type HGSC. NF1 loss was found in 21/286 (7.3%) endometrioid carcinomas with a favorable prognostic association (p = 0.048), and in 4/64 (5.9%) LGSC, mutually exclusive with other driver events., Conclusions: NF1 inactivation occurs in a significant subset of BRCA1/2 wild-type HGSC and a subset of LGSC. While the functional effects of NF1 inactivation need to be further characterized, this signifies a potential therapeutic opportunity to explore targeting NF1 inactivation in these tumors., Competing Interests: Declaration of Competing Interest Dr. Reuss reports having licensed the NF1 antibody (clone NFC) to Merck Millipore. All terms are being managed by the University of Heidelberg in accordance with its conflict-of-interest policies. The other authors declare no conflicts of interest., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
6. Simultaneous Nbs1 and p53 inactivation in neural progenitors triggers high-grade gliomas.
- Author
-
Reuss DE, Downing SM, Camacho CV, Wang YD, Piro RM, Herold-Mende C, Wang ZQ, Hofmann TG, Sahm F, von Deimling A, McKinnon PJ, and Frappart PO
- Subjects
- Animals, Child, Humans, Mice, Cell Cycle Proteins genetics, Homozygote, Nuclear Proteins genetics, Nuclear Proteins metabolism, Sequence Deletion, Glioma genetics, Tumor Suppressor Protein p53 genetics
- Abstract
Aims: Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder caused by hypomorphic mutations of NBS1. NBS1 is a member of the MRE11-RAD50-NBS1 (MRN) complex that binds to DNA double-strand breaks and activates the DNA damage response (DDR). Nbs1 inactivation in neural progenitor cells leads to microcephaly and premature death. Interestingly, p53 homozygous deletion rescues the NBS1-deficient phenotype allowing long-term survival. The objective of this work was to determine whether simultaneous inactivation of Nbs1 and p53 in neural progenitors triggered brain tumorigenesis and if so in which category this tumour could be classified., Methods: We generated a mouse model with simultaneous genetic inactivation of Nbs1 and p53 in embryonic neural stem cells and analysed the arising tumours with in-depth molecular analyses including immunohistochemistry, array comparative genomic hybridisation (aCGH), whole exome-sequencing and RNA-sequencing., Results: NBS1/P53-deficient mice develop high-grade gliomas (HGG) arising in the olfactory bulbs and in the cortex along the rostral migratory stream. In-depth molecular analyses using immunohistochemistry, aCGH, whole exome-sequencing and RNA-sequencing revealed striking similarities to paediatric human HGG with shared features with radiation-induced gliomas (RIGs)., Conclusions: Our findings show that concomitant inactivation of Nbs1 and p53 in mice promotes HGG with RIG features. This model could be useful for preclinical studies to improve the prognosis of these deadly tumours, but it also highlights the singularity of NBS1 among the other DNA damage response proteins in the aetiology of brain tumours., (© 2023 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.)
- Published
- 2023
- Full Text
- View/download PDF
7. Updates on the WHO diagnosis of IDH-mutant glioma.
- Author
-
Reuss DE
- Subjects
- Humans, Mutation, Central Nervous System pathology, World Health Organization, Isocitrate Dehydrogenase genetics, Glioma diagnosis, Glioma genetics, Brain Neoplasms diagnosis, Brain Neoplasms genetics
- Abstract
Purpose: The WHO classification of Tumors of the Central Nervous System represents the international standard classification for brain tumors. In 2021 the 5th edition (WHO CNS5) was published, and this review summarizes the changes regarding IDH-mutant gliomas and discusses unsolved issues and future perspectives., Methods: This review is based on the 5th edition of the WHO Blue Book of CNS tumors (WHO CNS5) and relevant related papers., Results: Major changes include taxonomy and nomenclature of IDH-mutant gliomas. Essential and desirable criteria for classification were established considering technical developments. For the first time molecular features are not only relevant for the classification of IDH-mutant gliomas but may impact grading as well., Conclusion: WHO CNS5 classification moves forward towards a classification which is founded on tumor biology and serves clinical needs. The rapidly increasing knowledge on the molecular landscape of IDH-mutant gliomas is expected to further refine classification and grading in the future., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
8. Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA): a molecularly distinct brain tumor type with recurrent NTRK gene fusions.
- Author
-
Bogumil H, Sill M, Schrimpf D, Ismer B, Blume C, Rahmanzade R, Hinz F, Cherkezov A, Banan R, Friedel D, Reuss DE, Selt F, Ecker J, Milde T, Pajtler KW, Schittenhelm J, Hench J, Frank S, Boldt HB, Kristensen BW, Scheie D, Melchior LC, Olesen V, Sehested A, Boué DR, Abdullaev Z, Satgunaseelan L, Kurth I, Seidlitz A, White CL, Ng HK, Shi ZF, Haberler C, Deckert M, Timmer M, Goldbrunner R, Tauziède-Espariat A, Varlet P, Brandner S, Alexandrescu S, Snuderl M, Aldape K, Korshunov A, Witt O, Herold-Mende C, Unterberg A, Wick W, Pfister SM, von Deimling A, Jones DTW, Sahm F, and Sievers P
- Subjects
- Humans, Young Adult, Biomarkers, Tumor genetics, Brain pathology, Gene Fusion, Receptor Protein-Tyrosine Kinases genetics, X-linked Nuclear Protein genetics, Brain Neoplasms genetics, Brain Neoplasms pathology, Central Nervous System Neoplasms, Neoplasms, Neuroepithelial genetics, Neoplasms, Neuroepithelial pathology
- Abstract
Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
9. Pediatric-type high-grade neuroepithelial tumors with CIC gene fusion share a common DNA methylation signature.
- Author
-
Sievers P, Sill M, Schrimpf D, Abdullaev Z, Donson AM, Lake JA, Friedel D, Scheie D, Tynninen O, Rauramaa T, Vepsäläinen KL, Samuel D, Chapman R, Grundy RG, Pajtler KW, Tauziède-Espariat A, Métais A, Varlet P, Snuderl M, Jacques TS, Aldape K, Reuss DE, Korshunov A, Wick W, Pfister SM, von Deimling A, Sahm F, and Jones DTW
- Abstract
Pediatric neoplasms in the central nervous system (CNS) show extensive clinical and molecular heterogeneity and are fundamentally different from those occurring in adults. Molecular genetic testing contributes to accurate diagnosis and enables an optimal clinical management of affected children. Here, we investigated a rare, molecularly distinct type of pediatric high-grade neuroepithelial tumor (n = 18), that was identified through unsupervised visualization of genome-wide DNA methylation array data, together with copy number profiling, targeted next-generation DNA sequencing, and RNA transcriptome sequencing. DNA and/or RNA sequencing revealed recurrent fusions involving the capicua transcriptional repressor (CIC) gene in 10/10 tumor samples analyzed, with the most common fusion being CIC::LEUTX (n = 9). In addition, a CIC::NUTM1 fusion was detected in one of the tumors. Apart from the detected fusion events, no additional oncogenic alteration was identified in these tumors. The histopathological review demonstrated a morphologically heterogeneous group of high-grade neuroepithelial tumors with positive immunostaining for markers of glial differentiation in combination with weak and focal expression of synaptophysin, CD56 and CD99. All tumors were located in the supratentorial compartment, occurred during childhood (median age 8.5 years) and typically showed early relapses. In summary, we expand the spectrum of pediatric-type tumors of the CNS by reporting a previously uncharacterized group of rare high-grade neuroepithelial tumors that share a common DNA methylation signature and recurrent gene fusions involving the transcriptional repressor CIC. Downstream functional consequences of the fusion protein CIC::LEUTX and potential therapeutic implications need to be further investigated., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
10. HIP1R and vimentin immunohistochemistry predict 1p/19q status in IDH-mutant glioma.
- Author
-
Felix M, Friedel D, Jayavelu AK, Filipski K, Reinhardt A, Warnken U, Stichel D, Schrimpf D, Korshunov A, Wang Y, Kessler T, Etminan N, Unterberg A, Herold-Mende C, Heikaus L, Sahm F, Wick W, Harter PN, von Deimling A, and Reuss DE
- Subjects
- Humans, Isocitrate Dehydrogenase genetics, Isocitrate Dehydrogenase metabolism, Immunohistochemistry, Vimentin metabolism, Proteomics, Mutation, Chromosomes, Human, Pair 1 genetics, Chromosomes, Human, Pair 19 genetics, Microfilament Proteins metabolism, Adaptor Proteins, Signal Transducing metabolism, Oligodendroglioma diagnosis, Oligodendroglioma genetics, Oligodendroglioma pathology, Brain Neoplasms genetics, Brain Neoplasms pathology, Glioma genetics, Glioma pathology, Astrocytoma genetics, Astrocytoma pathology
- Abstract
Background: IDH-mutant gliomas are separate based on the codeletion of the chromosomal arms 1p and 19q into oligodendrogliomas IDH-mutant 1p/19q-codeleted and astrocytomas IDH-mutant. While nuclear loss of ATRX expression excludes 1p/19q codeletion, its limited sensitivity prohibits to conclude on 1p/19q status in tumors with retained nuclear ATRX expression., Methods: Employing mass spectrometry based proteomic analysis in a discovery series containing 35 fresh frozen and 72 formalin fixed and paraffin embedded tumors with established IDH and 1p/19q status, potential biomarkers were discovered. Subsequent validation immunohistochemistry was conducted on two independent series (together 77 oligodendrogliomas IDH-mutant 1p/19q-codeleted and 92 astrocytomas IDH-mutant)., Results: We detected highly specific protein patterns distinguishing oligodendroglioma and astrocytoma. In these patterns, high HIP1R and low vimentin levels were observed in oligodendroglioma while low HIP1R and high vimentin levels occurred in astrocytoma. Immunohistochemistry for HIP1R and vimentin expression in 35 cases from the FFPE discovery series confirmed these findings. Blinded evaluation of the validation cohorts predicted the 1p/19q status with a positive and negative predictive value as well as an accuracy of 100% in the first cohort and with a positive predictive value of 83%; negative predictive value of 100% and an accuracy of 92% in the second cohort. Nuclear ATRX loss as marker for astrocytoma increased the sensitivity to 96% and the specificity to 100%., Conclusions: We demonstrate that immunohistochemistry for HIP1R, vimentin, and ATRX predict 1p/19q status with 100% specificity and 95% sensitivity and therefore, constitutes a simple and inexpensive approach to the classification of IDH-mutant glioma., (© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
11. Anaplastic ganglioglioma-A diagnosis comprising several distinct tumour types.
- Author
-
Reinhardt A, Pfister K, Schrimpf D, Stichel D, Sahm F, Reuss DE, Capper D, Wefers AK, Ebrahimi A, Sill M, Felsberg J, Reifenberger G, Becker A, Prinz M, Staszewski O, Hartmann C, Schittenhelm J, Gramatzki D, Weller M, Olar A, Rushing EJ, Bergmann M, Farrell MA, Blümcke I, Coras R, Beckervordersandforth J, Kim SH, Rogerio F, Dimova PS, Niehusmann P, Unterberg A, Platten M, Pfister SM, Wick W, Herold-Mende C, and von Deimling A
- Subjects
- Child, Humans, Retrospective Studies, Isocitrate Dehydrogenase, Ganglioglioma pathology, Glioma pathology, Astrocytoma pathology, Brain Neoplasms genetics, Central Nervous System Neoplasms pathology
- Abstract
Aims: Anaplastic ganglioglioma is a rare tumour, and diagnosis has been based on histological criteria. The 5th edition of the World Health Organization Classification of Tumours of the Central Nervous System (CNS WHO) does not list anaplastic ganglioglioma as a distinct diagnosis due to lack of molecular data in previous publications. We retrospectively compiled a cohort of 54 histologically diagnosed anaplastic gangliogliomas to explore whether the molecular profiles of these tumours represent a separate type or resolve into other entities., Methods: Samples were subjected to histological review, desoxyribonucleic acid (DNA) methylation profiling and next-generation sequencing. Morphological and molecular data were summarised to an integrated diagnosis., Results: The majority of tumours designated as anaplastic gangliogliomas resolved into other CNS WHO diagnoses, most commonly pleomorphic xanthoastrocytoma (16/54), glioblastoma, isocitrate dehydrogenase protein (IDH) wild type and diffuse paediatric-type high-grade glioma, H3 wild type and IDH wild type (11 and 2/54), followed by low-grade glial or glioneuronal tumours including pilocytic astrocytoma, dysembryoplastic neuroepithelial tumour and diffuse leptomeningeal glioneuronal tumour (5/54), IDH mutant astrocytoma (4/54) and others (6/54). A subset of tumours (10/54) was not assignable to a CNS WHO diagnosis, and common molecular profiles pointing to a separate entity were not evident., Conclusions: In summary, we show that tumours histologically diagnosed as anaplastic ganglioglioma comprise a wide spectrum of CNS WHO tumour types with different prognostic and therapeutic implications. We therefore suggest assigning this designation with caution and recommend comprehensive molecular workup., (© 2022 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.)
- Published
- 2022
- Full Text
- View/download PDF
12. Molecular matched targeted therapies for primary brain tumors-a single center retrospective analysis.
- Author
-
Luger AL, König S, Samp PF, Urban H, Divé I, Burger MC, Voss M, Franz K, Fokas E, Filipski K, Demes MC, Stenzinger A, Sahm F, Reuss DE, Harter PN, Wagner S, Hattingen E, Wichert J, Lapa C, Fröhling S, Steinbach JP, and Ronellenfitsch MW
- Subjects
- Humans, Mutation, Protein-Tyrosine Kinases, Proto-Oncogene Proteins, Proto-Oncogene Proteins B-raf, Retrospective Studies, Brain Neoplasms, Molecular Targeted Therapy
- Abstract
Purpose: Molecular diagnostics including next generation gene sequencing are increasingly used to determine options for individualized therapies in brain tumor patients. We aimed to evaluate the decision-making process of molecular targeted therapies and analyze data on tolerability as well as signals for efficacy., Methods: Via retrospective analysis, we identified primary brain tumor patients who were treated off-label with a targeted therapy at the University Hospital Frankfurt, Goethe University. We analyzed which types of molecular alterations were utilized to guide molecular off-label therapies and the diagnostic procedures for their assessment during the period from 2008 to 2021. Data on tolerability and outcomes were collected., Results: 413 off-label therapies were identified with an increasing annual number for the interval after 2016. 37 interventions (9%) were targeted therapies based on molecular markers. Glioma and meningioma were the most frequent entities treated with molecular matched targeted therapies. Rare entities comprised e.g. medulloblastoma and papillary craniopharyngeoma. Molecular targeted approaches included checkpoint inhibitors, inhibitors of mTOR, FGFR, ALK, MET, ROS1, PIK3CA, CDK4/6, BRAF/MEK and PARP. Responses in the first follow-up MRI were partial response (13.5%), stable disease (29.7%) and progressive disease (46.0%). There were no new safety signals. Adverse events with fatal outcome (CTCAE grade 5) were not observed. Only, two patients discontinued treatment due to side effects. Median progression-free and overall survival were 9.1/18 months in patients with at least stable disease, and 1.8/3.6 months in those with progressive disease at the first follow-up MRI., Conclusion: A broad range of actionable alterations was targeted with available molecular therapeutics. However, efficacy was largely observed in entities with paradigmatic oncogenic drivers, in particular with BRAF mutations. Further research on biomarker-informed molecular matched therapies is urgently necessary., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
13. Oligosarcomas, IDH-mutant are distinct and aggressive.
- Author
-
Suwala AK, Felix M, Friedel D, Stichel D, Schrimpf D, Hinz F, Hewer E, Schweizer L, Dohmen H, Pohl U, Staszewski O, Korshunov A, Stein M, Wongsurawat T, Cheunsuacchon P, Sathornsumetee S, Koelsche C, Turner C, Le Rhun E, Mühlebner A, Schucht P, Özduman K, Ono T, Shimizu H, Prinz M, Acker T, Herold-Mende C, Kessler T, Wick W, Capper D, Wesseling P, Sahm F, von Deimling A, Hartmann C, and Reuss DE
- Subjects
- Adult, Aged, Brain Neoplasms genetics, Female, Humans, Male, Middle Aged, Mutation, Oligodendroglioma genetics, Sarcoma genetics, Brain Neoplasms pathology, Isocitrate Dehydrogenase genetics, Oligodendroglioma pathology, Sarcoma pathology
- Abstract
Oligodendrogliomas are defined at the molecular level by the presence of an IDH mutation and codeletion of chromosomal arms 1p and 19q. In the past, case reports and small studies described gliomas with sarcomatous features arising from oligodendrogliomas, so called oligosarcomas. Here, we report a series of 24 IDH-mutant oligosarcomas from 23 patients forming a distinct methylation class. The tumors were recurrences from prior oligodendrogliomas or developed de novo. Precursor tumors of 12 oligosarcomas were histologically and molecularly indistinguishable from conventional oligodendrogliomas. Oligosarcoma tumor cells were embedded in a dense network of reticulin fibers, frequently showing p53 accumulation, positivity for SMA and CALD1, loss of OLIG2 and gain of H3K27 trimethylation (H3K27me3) as compared to primary lesions. In 5 oligosarcomas no 1p/19q codeletion was detectable, although it was present in the primary lesions. Copy number neutral LOH was determined as underlying mechanism. Oligosarcomas harbored an increased chromosomal copy number variation load with frequent CDKN2A/B deletions. Proteomic profiling demonstrated oligosarcomas to be highly distinct from conventional CNS WHO grade 3 oligodendrogliomas with consistent evidence for a smooth muscle differentiation. Expression of several tumor suppressors was reduced with NF1 being lost frequently. In contrast, oncogenic YAP1 was aberrantly overexpressed in oligosarcomas. Panel sequencing revealed mutations in NF1 and TP53 along with IDH1/2 and TERT promoter mutations. Survival of patients was significantly poorer for oligosarcomas as first recurrence than for grade 3 oligodendrogliomas as first recurrence. These results establish oligosarcomas as a distinct group of IDH-mutant gliomas differing from conventional oligodendrogliomas on the histologic, epigenetic, proteomic, molecular and clinical level. The diagnosis can be based on the combined presence of (a) sarcomatous histology, (b) IDH-mutation and (c) TERT promoter mutation and/or 1p/19q codeletion, or, in unresolved cases, on its characteristic DNA methylation profile., (© 2021. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
14. Pleomorphic xanthoastrocytoma is a heterogeneous entity with pTERT mutations prognosticating shorter survival.
- Author
-
Ebrahimi A, Korshunov A, Reifenberger G, Capper D, Felsberg J, Trisolini E, Pollo B, Calatozzolo C, Prinz M, Staszewski O, Schweizer L, Schittenhelm J, Harter PN, Paulus W, Thomas C, Kohlhof-Meinecke P, Seiz-Rosenhagen M, Milde T, Casalini BM, Suwala A, Wefers AK, Reinhardt A, Sievers P, Kramm CM, Etminam N, Unterberg A, Wick W, Herold-Mende C, Sturm D, Pfister SM, Sill M, Jones DTW, Schrimpf D, Reuss DE, Aldape K, Abdullaev Z, Sahm F, von Deimling A, and Stichel D
- Subjects
- Astrocytoma mortality, Astrocytoma pathology, Brain Neoplasms mortality, Brain Neoplasms pathology, DNA Methylation, Humans, Mutation, Prognosis, Survival Rate, Astrocytoma genetics, Brain Neoplasms genetics, Telomerase genetics
- Abstract
Pleomorphic xanthoastrocytoma (PXA) in its classic manifestation exhibits distinct morphological features and is assigned to CNS WHO grade 2 or grade 3. Distinction from glioblastoma variants and lower grade glial and glioneuronal tumors is a common diagnostic challenge. We compared a morphologically defined set of PXA (histPXA) with an independent set, defined by DNA methylation analysis (mcPXA). HistPXA encompassed 144 tumors all subjected to DNA methylation array analysis. Sixty-two histPXA matched to the methylation class mcPXA. These were combined with the cases that showed the mcPXA signature but had received a histopathological diagnosis other than PXA. This cohort constituted a set of 220 mcPXA. Molecular and clinical parameters were analyzed in these groups. Morphological parameters were analyzed in a subset of tumors with FFPE tissue available. HistPXA revealed considerable heterogeneity in regard to methylation classes, with methylation classes glioblastoma and ganglioglioma being the most frequent mismatches. Similarly, the mcPXA cohort contained tumors of diverse histological diagnoses, with glioblastoma constituting the most frequent mismatch. Subsequent analyses demonstrated the presence of canonical pTERT mutations to be associated with unfavorable prognosis among mcPXA. Based on these data, we consider the tumor type PXA to be histologically more varied than previously assumed. Histological approach to diagnosis will predominantly identify cases with the established archetypical morphology. DNA methylation analysis includes additional tumors in the tumor class PXA that share similar DNA methylation profile but lack the typical morphology of a PXA. DNA methylation analysis also assist in separating other tumor types with morphologic overlap to PXA. Our data suggest the presence of canonical pTERT mutations as a robust indicator for poor prognosis in methylation class PXA., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
15. Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors.
- Author
-
Sievers P, Henneken SC, Blume C, Sill M, Schrimpf D, Stichel D, Okonechnikov K, Reuss DE, Benzel J, Maaß KK, Kool M, Sturm D, Zheng T, Ghasemi DR, Kohlhof-Meinecke P, Cruz O, Suñol M, Lavarino C, Ruf V, Boldt HB, Pagès M, Pouget C, Schweizer L, Kranendonk MEG, Akhtar N, Bunkowski S, Stadelmann C, Schüller U, Mueller WC, Dohmen H, Acker T, Harter PN, Mawrin C, Beschorner R, Brandner S, Snuderl M, Abdullaev Z, Aldape K, Gilbert MR, Armstrong TS, Ellison DW, Capper D, Ichimura K, Reifenberger G, Grundy RG, Jabado N, Krskova L, Zapotocky M, Vicha A, Varlet P, Wesseling P, Rutkowski S, Korshunov A, Wick W, Pfister SM, Jones DTW, von Deimling A, Pajtler KW, and Sahm F
- Subjects
- Child, Female, Humans, Male, Oncogene Fusion, Cell Cycle Proteins genetics, Ependymoma genetics, Supratentorial Neoplasms genetics, Transcription Factors genetics, Tumor Suppressor Proteins genetics
- Abstract
Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.