1. Deleterious heteroplasmic mitochondrial mutations are associated with an increased risk of overall and cancer-specific mortality.
- Author
-
Hong YS, Battle SL, Shi W, Puiu D, Pillalamarri V, Xie J, Pankratz N, Lake NJ, Lek M, Rotter JI, Rich SS, Kooperberg C, Reiner AP, Auer PL, Heard-Costa N, Liu C, Lai M, Murabito JM, Levy D, Grove ML, Alonso A, Gibbs R, Dugan-Perez S, Gondek LP, Guallar E, and Arking DE
- Subjects
- Humans, DNA, Mitochondrial genetics, Heteroplasmy, Mutation, Mitochondria genetics, Leukemia genetics
- Abstract
Mitochondria carry their own circular genome and disruption of the mitochondrial genome is associated with various aging-related diseases. Unlike the nuclear genome, mitochondrial DNA (mtDNA) can be present at 1000 s to 10,000 s copies in somatic cells and variants may exist in a state of heteroplasmy, where only a fraction of the DNA molecules harbors a particular variant. We quantify mtDNA heteroplasmy in 194,871 participants in the UK Biobank and find that heteroplasmy is associated with a 1.5-fold increased risk of all-cause mortality. Additionally, we functionally characterize mtDNA single nucleotide variants (SNVs) using a constraint-based score, mitochondrial local constraint score sum (MSS) and find it associated with all-cause mortality, and with the prevalence and incidence of cancer and cancer-related mortality, particularly leukemia. These results indicate that mitochondria may have a functional role in certain cancers, and mitochondrial heteroplasmic SNVs may serve as a prognostic marker for cancer, especially for leukemia., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF