1. The separating variety for 2 × 2 matrix invariants.
- Author
-
Elmer, Jonathan
- Subjects
- *
LINEAR algebra , *VECTOR spaces , *LINEAR algebraic groups - Abstract
Let G be a linear algebraic group acting linearly on a vector space (or more generally, an affine variety) $ \mathcal {V} $ V , and let $ {\Bbbk [\mathcal {V}]^{G}} $ k [ V ] G be the corresponding algebra of invariant polynomial functions. A separating set $ S \subseteq {\Bbbk [\mathcal {V}]^{G}} $ S ⊆ k [ V ] G is a set of polynomials with the property that for all $ v,w \in \mathcal {V} $ v , w ∈ V , if there exists $ f \in {\Bbbk [\mathcal {V}]^{G}} $ f ∈ k [ V ] G separating $v$ and $w$, then there exists $ f \in S $ f ∈ S separating $v$ and $w$. In this article, we consider the action of $ G = \operatorname {GL}_2(\mathbb {C}) $ G = GL 2 (C) on the $ \mathbb {C} $ C -vector space $ {\mathcal {M}}_2^n $ M 2 n of n-tuples of $ 2 \times 2 $ 2 × 2 matrices by simultaneous conjugation. Minimal generating sets $ S_n $ S n of $ \mathbb {C}[{\mathcal {M}}_2^n]^G $ C [ M 2 n ] G are well known and $ |S_n| = \frac 16(n^3+11n) $ | S n | = 1 6 (n 3 + 11 n). In recent work, Kaygorodov et al. [Kaygorodov I, Lopatin A, Popov Y. Separating invariants for $ 2 \times 2 $ 2 × 2 matrices. Linear Algebra Appl. 2018;559:114-124.] showed that for all $ n \geq ~1 $ n ≥ 1 , $ S_n $ S n is a minimal separating set by inclusion, i.e. that no proper subset of $ S_n $ S n is a separating set. This does not necessarily mean that $ S_n $ S n has minimum cardinality among all separating sets for $ \mathbb {C}[{\mathcal {M}}_2^n]^G $ C [ M 2 n ] G . Our main result shows that any separating set for $ \mathbb {C}[{\mathcal {M}}_2^n]^G $ C [ M 2 n ] G has cardinality $ \geq ~5n-5 $ ≥ 5 n − 5. In particular, there is no separating set of size $ \dim (\mathbb {C}[{\mathcal {M}}_2^n]^G) = 4n-3 $ dim (C [ M 2 n ] G) = 4 n − 3 for $ n \geq ~3 $ n ≥ 3. Further, $ S_3 $ S 3 has indeed minimum cardinality as a separating set, but for $ n \geq ~4 $ n ≥ 4 there may exist a smaller separating set than $ S_n $ S n . We show that a smaller separating set does in fact exist for all $ n \geq ~5 $ n ≥ 5. We also prove similar results for the left–right action of $ \operatorname {SL}_2(\mathbb {C}) \times \operatorname {SL}_2(\mathbb {C}) $ SL 2 (C) × SL 2 (C) on $ {\mathcal {M}}_2^n $ M 2 n . [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF