Pablo Gargallo, Merche Molero, Cristina Bilbao, Ruth Stuckey, Estrella Carrillo-Cruz, Lourdes Hermosín, Olga Pérez-López, Antonio Jiménez-Velasco, Elena Soria, Marián Lázaro, Paula Carbonell, Yania Yáñez, Iria Gómez, Marta Izquierdo-García, Jennifer Valero-García, Carlos Ruiz, Esperanza Such, Inés Calabria, and Instituto de Medicina Genómica
A suitable diagnostic classification of myeloid neoplasms and acute leukemias requires testing for a large number of molecular biomarkers. Next-generation sequencing is a technology able to integrate identification of the vast majority of them in a single test. This manuscript includes the design, analytical validation and clinical feasibility evaluation of a molecular diagnostic kit for onco-hematological diseases. It is based on sequencing of the coding regions of 76 genes (seeking single-nucleotide variants, small insertions or deletions and CNVs), as well as the search for fusions in 27 target genes. The kit has also been designed to detect large CNVs throughout the genome by including specific probes and employing a custom bioinformatics approach. The analytical and clinical feasibility validation of the Haematology OncoKitDx panel has been carried out from the sequencing of 170 patient samples from 6 hospitals (in addition to the use of commercial reference samples). The analytical validation showed sensitivity and specificity close to 100% for all the parameters evaluated, with a detection limit of 2% for SNVs and SVs, and 20% for CNVs. Clinically relevant mutations were detected in 94% of all patients. An analysis of the correlation between the genetic risk classification of AML (according to ELN 2017) established by the hospitals and that obtained by the Haematology OncoKitDx panel showed an almost perfect correlation (K = 0.94). Among the AML samples with a molecular diagnosis, established by the centers according to the WHO, the Haematology OncoKitDx analysis showed the same result in 97% of them. The panel was able to adequately differentiate between MPN subtypes and also detected alterations that modified the diagnosis (FIP1L1-PDGFRA). Likewise, the cytogenetic risk derived from the CNV plot generated by the NGS panel correlated substantially with the results of the conventional karyotype (K = 0.71) among MDS samples. In addition, the panel detected the main biomarkers of prognostic value among patients with ALL. This validated solution enables a reliable analysis of a large number of molecular biomarkers from a DNA sample in a single assay., This research was funded by Imegen (Instituto de Medicina Genómica, Paterna, Spain).