1. Long-read sequencing for fast and robust identification of correct genome-edited alleles: PCR-based and Cas9 capture methods.
- Author
-
McCabe CV, Price PD, Codner GF, Allan AJ, Caulder A, Christou S, Loeffler J, Mackenzie M, Malzer E, Mianné J, Nowicki KJ, O'Neill EJ, Pike FJ, Hutchison M, Petit-Demoulière B, Stewart ME, Gates H, Wells S, Sanderson ND, and Teboul L
- Subjects
- Animals, Alleles, Recombinational DNA Repair, Polymerase Chain Reaction, CRISPR-Cas Systems genetics, Gene Editing methods
- Abstract
Background: Recent developments in CRISPR/Cas9 genome-editing tools have facilitated the introduction of precise alleles, including genetic intervals spanning several kilobases, directly into the embryo. However, the introduction of donor templates, via homology directed repair, can be erroneous or incomplete and these techniques often produce mosaic founder animals. Thus, newly generated alleles must be verified at the sequence level across the targeted locus. Screening for the presence of the desired mutant allele using traditional sequencing methods can be challenging due to the size of the interval to be sequenced, together with the mosaic nature of founders., Methodology/principal Findings: In order to help disentangle the genetic complexity of these animals, we tested the application of Oxford Nanopore Technologies long-read sequencing at the targeted locus and found that the achievable depth of sequencing is sufficient to offset the sequencing error rate associated with the technology used to validate targeted regions of interest. We have assembled an analysis workflow that facilitates interrogating the entire length of a targeted segment in a single read, to confirm that the intended mutant sequence is present in both heterozygous animals and mosaic founders. We used this workflow to compare the output of PCR-based and Cas9 capture-based targeted sequencing for validation of edited alleles., Conclusion: Targeted long-read sequencing supports in-depth characterisation of all experimental models that aim to produce knock-in or conditional alleles, including those that contain a mix of genome-edited alleles. PCR- or Cas9 capture-based modalities bring different advantages to the analysis., Competing Interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: LT was the recipient of a conference travel award from ONT., (Copyright: © 2024 McCabe et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF