Currently, the accuracy of synthetic seismograms used for Global CMT inversion, which are based on modern 3D Earth models, is limited by the validity of the path-average approximation for mode summation and surface-wave ray theory. Inaccurate computation of the ground motion’s amplitude and polarization as well as other effects that are not modeled may bias inverted earthquake parameters. Synthetic seismograms of higher accuracy will improve the determination of seismic sources in the CMT analysis, and remove concerns about this source of uncertainty. Strain tensors, and databases thereof, have recently been implemented for the spectral-element solver SPECFEM3D (Ding et al., 2020) based on the theory of previous work (Zhao et al., 2006) for regional inversion of seismograms for earthquake parameters. The main barriers to a global database of Green functions have been storage, I/O, and computation. But, compression tricks and smart selection of spectral elements, fast I/O data formats for high-performance computing, such as ADIOS, and wave-equation solution on GPUs, have dramatically decreased the cost of storage, I/O, and computation, respectively. Additionally, the global spectral-element grid matches the accuracy of a full forward calculation by virtue of Lagrange interpolation. Here, we present our first preliminary database of stored Green functions for 17 seismic stations of the global seismic networks to be used in future 3-D centroid moment tensor inversions. We demonstrate the fast retrieval and computation of seismograms from the database.