Two non-metallicolous and metallicolous populations of harmel plants were compared regarding the role of proline, cysteine, reducing sugars, hydrogen peroxide (H 2 O 2 ), glutathione, thiol compounds, organic acids, total free amino acids, and lipid peroxidation in detoxification and tolerance of silver stress (0, 1, 2.5, 5, 10 ppm Ag). The results of the present research state that the effects of Ag were increased total free amino acids, glutathione, organic acids, proline, reducing sugars, thiol compounds, and cysteine, so the accumulation of these compounds was higher in metallicolous populations than non-metallicolous. On the other hand, non-metallicolous populations showed higher content of lipid peroxidation and H 2 O 2 than metallicolous populations under Ag stresses. Also, the accumulation of phytochelatins (PC) was observed with increasing Ag concentration, which shows that compared to glutathione, non-protein thiols have a higher concentration. The number of organic acids (malic acids, fumaric, oxalic, and citric) except acetic acid increased in the leaves of harmel in both populations. According to the results of this research, the harmel metallophilic population has a crucial role in the tolerance and detoxification of Ag stress, so the antioxidant responses of the plant against Ag stress in the non-metallicolous population were lower than the metallicolous population. Based on the above results, it can be concluded that the harmel plant has a detoxification mechanism to deal with high concentrations of Ag., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)