1. Positional Information-Based Organization of Surfactant Droplet Swarms Emerging from Competition Between Local and Global Marangoni Effects.
- Author
-
de Visser PJ, Neeleman M, Dankloff PFJ, Derks MTGM, and Korevaar PA
- Abstract
Positional information is key for particles to adapt their behavior based on their position in external concentration gradients, and thereby self-organize into complex patterns. Here, position-dependent behavior of floating surfactant droplets that self-organize in a pH gradient is demonstrated, using the Marangoni effect to translate gradients of surface-active molecules into motion. First, fields of surfactant microliter-droplets are generated, in which droplets floating on water drive local, outbound Marangoni flows upon dissolution of surfactant and concomitantly grow myelin filaments. Next, a competing surfactant based on a hydrolysable amide is introduced, which is more surface active than the myelin surfactant and thereby inhibits the local Marangoni flows and myelin growth from the droplets. Upon introducing a pH gradient, the amide surfactant hydrolyses in the acidic region, so that the local Marangoni flows and myelin growth are reestablished. The resulting combination of local and global surface tension gradients produces a region of myelin-growing droplets and a region where myelin growth is suppressed, separated by a wave front of closely packed droplets, of which the position can be controlled by the pH gradient. Thereby, it is shown how "French flag"-patterns, in synthetic settings typically emerging from reaction-diffusion systems, can also be established via surfactant droplet systems., (© 2024 The Author(s). Small published by Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF