5 results on '"Ludivine Grzelak"'
Search Results
2. Resistance of Omicron subvariants BA.2.75.2, BA.4.6 and BQ.1.1 to neutralizing antibodies
- Author
-
Delphine Planas, Timothée Bruel, Isabelle Staropoli, Florence Guivel-Benhassine, Françoise Porrot, Piet Maes, Ludivine Grzelak, Matthieu Prot, Said Mougari, Cyril Planchais, Julien Puech, Madelina Saliba, Riwan Sahraoui, Florent Fémy, Nathalie Morel, Jérémy Dufloo, Rafael Sanjuán, Hugo Mouquet, Emmanuel André, Laurent Hocqueloux, Etienne Simon-Loriere, David Veyer, Thierry Prazuck, Hélène Péré, Olivier Schwartz, Virus et Immunité - Virus and immunity (CNRS-UMR3569), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Vaccine Research Institute [Créteil, France] (VRI), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Génomique évolutive des virus à ARN - Evolutionary genomics of RNA viruses, Institut Pasteur [Paris] (IP)-Université Paris Cité (UPCité), Immunologie humorale - Humoral Immunology, Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Hôpital Européen Georges Pompidou [APHP] (HEGP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO), Service de Pharmacologie et Immunoanalyse (SPI), Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), I2SysBio (CSIC-UV), Universitat de València (UV), University Hospitals Leuven [Leuven], Centre Hospitalier Régional d'Orléans (CHRO), Génomique fonctionnelle des tumeurs solides = Functional Genomics of Solid Tumors [CRC] (FunGeST), Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), Bruel, Timothee, Grzelak, Ludivine, Sanjuán, Rafael, Simon-Loriere, Etienne, Schwartz, Olivier, Institute for Integrative Systems Biology [Valencia] (i2sysbio), Spanish National Research Council (CSIC)-Universitat de València (UV), Work in OS lab is funded by Institut Pasteur, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, Fondation pour la Recherche Médicale (FRM) EQU202003010172, ANRS, the Vaccine Research Institute (ANR-10-LABX-77), Labex IBEID (ANR-10-LABX-62-IBEID), ANR / FRM Flash Covid PROTEO-SARS-CoV-2, ANR Coronamito, HERA European funding, Sanofi and IDISCOVR. DP is supported by the Vaccine Research Institute. The E.S.-L. laboratory is funded by Institut Pasteur, the INCEPTION program (Investissements d’Avenir grant ANR-16-CONV-0005) and the French Government’s Investissement d’Avenir program, Laboratoire d’Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (grant no. ANR-10-LABX-62-IBEID). HERA European funding and the NIH PICREID (grant no U01AI151758). The Opera system was co-funded by Institut Pasteur and the Région ile de France (DIM1Health). Work in UPBI is funded by grant ANR-10-INSB-04-01 and Région Ile-de-France program DIM1-Health. P.M. acknowledges the support of a COVID-19 research grant from ‘Fonds Wetenschappelijk Onderzoek’/Research Foundation Flanders (grant G0H4420N) and ‘Internal Funds KU Leuven’ (grant 3M170314)., ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010), ANR-20-COVI-0059,PROTEO-SARS-CoV-2,Protéomique du SARS-CoV-2(2020), ANR-21-CO14-0007,CoronaMito,Conséquences de l'infection par le SRAS-CoV-2 sur la fonction mitochondriale(2021), ANR-16-CONV-0005,INCEPTION,Institut Convergences pour l'étude de l'Emergence des Pathologies au Travers des Individus et des populatiONs(2016), and ANR-10-INBS-0004,France-BioImaging,Développment d'une infrastructure française distribuée coordonnée(2010)
- Subjects
Multidisciplinary ,Breakthrough Infections ,SARS-CoV-2 ,[SDV]Life Sciences [q-bio] ,General Physics and Astronomy ,COVID-19 ,General Chemistry ,Antibodies, Viral ,Antibodies, Neutralizing ,Antiviral Agents ,General Biochemistry, Genetics and Molecular Biology ,Spike Glycoprotein, Coronavirus ,Humans ,BNT162 Vaccine - Abstract
Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4 and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariants BA.2.75.2 and BQ.1.1 are expected to become predominant in many countries in November 2022. They carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lost any antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remained weakly active. BQ.1.1 was also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals were low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increased these titers, which remained about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increased more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitated their spread in immunized populations and raises concerns about the efficacy of most currently available mAbs.
- Published
- 2022
- Full Text
- View/download PDF
3. IRF8 regulates efficacy of therapeutic anti-CD20 monoclonal antibodies
- Author
-
Ludivine Grzelak, Ferdinand Roesch, Amaury Vaysse, Anne Biton, Rachel Legendre, Françoise Porrot, Pierre‐Henri Commère, Cyril Planchais, Hugo Mouquet, Marco Vignuzzi, Timothée Bruel, Olivier Schwartz, Virus et Immunité - Virus and immunity (CNRS-UMR3569), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), École Doctorale Bio Sorbonne Paris Cité [Paris] (ED562 - BioSPC), Université Sorbonne Paris Cité (USPC)-Université Paris Cité (UPCité), Infectiologie et Santé Publique (UMR ISP), Université de Tours (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Hub Bioinformatique et Biostatistique - Bioinformatics and Biostatistics HUB, Institut Pasteur [Paris] (IP)-Université Paris Cité (UPCité), Cytometrie et Biomarqueurs – Cytometry and Biomarkers (UTechS CB), Institut Pasteur [Paris] (IP), Immunologie humorale - Humoral Immunology, Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM), Populations virales et Pathogenèse - Viral Populations and Pathogenesis, Institut Pasteur, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, Fondation pour la Recherche Médicale (FRM, IDISCOVR European Health Emergency Preparedness and Response Authority (HERA), French Ministry of Higher Education, Research and Innovation, ANR-10-LABX-0077,VRI,Initiative for the creation of a Vaccine Research Institute(2010), ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010), ANR-20-COVI-0059,PROTEO-SARS-CoV-2,Protéomique du SARS-CoV-2(2020), and ANR-21-CO14-0007,CoronaMito,Conséquences de l'infection par le SRAS-CoV-2 sur la fonction mitochondriale(2021)
- Subjects
Immunology ,Antineoplastic Agents ,anti-CD20 monoclonal antibodies ,Antigens, CD20 ,IRF8 ,DLBCL ,Interferon Regulatory Factors ,Immunology and Allergy ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,Humans ,RNA ,CD20 protein ,Rituximab ,CRISPR/Cas9 - Abstract
International audience; Anti-CD20 monoclonal antibodies such as Rituximab, Ofatumumab, and Obinutuzumab are widely used to treat lymphomas and autoimmune diseases. They act by depleting B cells, mainly through Fc-dependent effectors functions. Some patients develop resistance to treatment but the underlying mechanisms are poorly understood. Here, we performed a genome-wide CRISPR/Cas9 screen to identify genes regulating the efficacy of anti-CD20 antibodies. We used as a model the killing of RAJI B cells by Rituximab through complement-dependent-cytotoxicity (CDC). As expected, the screen identified MS4A1, encoding CD20, the target of Rituximab. Among other identified genes, the role of Interferon Regulatory Factor 8 (IRF8) was validated in two B-cell lines. IRF8 KO also decreased the efficacy of antibody-dependent cellular cytotoxicity and phagocytosis (ADCC and ADCP) induced by anti-CD20 antibodies. We further show that IRF8 is necessary for efficient CD20 transcription. Levels of IRF8 and CD20 RNA or proteins correlated in normal B cells and in hundreds of malignant B cells. Therefore, IRF8 regulates CD20 expression and controls the depleting capacity of anti-CD20 antibodies. Our results bring novel insights into the pathways underlying resistance to CD20-targeting immunotherapies.
- Published
- 2022
- Full Text
- View/download PDF
4. Poor sensitivity of iPSC-derived neural progenitors and glutamatergic neurons to SARS-CoV-2
- Author
-
Marija Zivaljic, Mathieu Hubert, Ludivine Grzelak, Giulia Sansone, Uwe Maskos, and Olivier Schwartz
- Abstract
COVID-19 is a respiratory disease affecting multiple organs including the central nervous system (CNS), with a characteristic loss of smell and taste. Although frequently reported, the neurological symptoms remain enigmatic. There is no consensus on the extent of CNS infection. Here, we derived human induced pluripotent stem cells (hiPSC) into neural progenitor cells (NPCs) and cortical excitatory neurons to study their permissiveness to SARS-CoV-2 infection. Flow cytometry and western blot analysis indicated that NPCs and neurons do not express detectable levels of the SARS-CoV-2 receptor ACE2. We thus generated cells expressing ACE2 by lentiviral transduction to analyze in a controlled manner the properties of SARS-CoV-2 infection relative to ACE2 expression. Sensitivity of parental and ACE2 expressing cells was assessed with GFP- or luciferase-carrying pseudoviruses and with authentic SARS-CoV-2 Wuhan, D614G, Alpha or Delta variants. SARS-CoV-2 replication was assessed by microscopy, RT-qPCR and infectivity assays. Pseudoviruses infected only cells overexpressing ACE2. Neurons and NPCs were unable to efficiently replicate SARS-CoV-2, whereas ACE2 overexpressing neurons were highly sensitive to productive infection. Altogether, our results indicate that primary NPCs and cortical neurons remain poorly permissive to SARS-CoV-2 across the variants’ spectrum, in the absence of ACE2 expression.
- Published
- 2022
- Full Text
- View/download PDF
5. Longitudinal analysis of serum neutralization of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 in patients receiving monoclonal antibodies
- Author
-
Timothée Bruel, Karl Stéfic, Yann Nguyen, Donatella Toniutti, Isabelle Staropoli, Françoise Porrot, Florence Guivel-Benhassine, William-Henry Bolland, Delphine Planas, Jérôme Hadjadj, Lynda Handala, Cyril Planchais, Matthieu Prot, Etienne Simon-Lorière, Emmanuel André, Guy Baele, Lize Cuypers, Luc Mouthon, Hugo Mouquet, Julian Buchrieser, Aymeric Sève, Thierry Prazuck, Piet Maes, Benjamin Terrier, Laurent Hocqueloux, Olivier Schwartz, Virus et Immunité - Virus and immunity (CNRS-UMR3569), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Vaccine Research Institute [Créteil, France] (VRI), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Morphogénèse et antigénicité du VIH et du virus des Hépatites (MAVIVH - U1259 Inserm - CHRU Tours ), Centre Hospitalier Régional Universitaire de Tours (CHRU Tours)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de Référence du VIH [Tours] - laboratoire associé (CNR VIH), Centre de référence des maladies auto-immunes systémiques rares d'Île-de-France / National Reference Center for Rare Systemic Autoimmune Diseases, Hôpital Cochin [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), École Doctorale Bio Sorbonne Paris Cité [Paris] (ED562 - BioSPC), Université Sorbonne Paris Cité (USPC)-Université Paris Cité (UPCité), Immunologie humorale - Humoral Immunology, Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Génomique évolutive des virus à ARN - Evolutionary genomics of RNA viruses, Institut Pasteur [Paris] (IP)-Université Paris Cité (UPCité), University Hospitals Leuven [Leuven], Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Centre Hospitalier Régional d'Orléans (CHRO), Work in the O.S. lab is funded by Institut Pasteur, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, Fondation pour la Recherche Médicale (FRM), ANRS, the Vaccine Research Institute (ANR-10-LABX-77), Labex IBEID (ANR-10-LABX-62-IBEID), ANR/FRM Flash Covid PROTEO-SARS-CoV-2, and ANR Coronamito and IDISCOVR. Work in the UPBI facility is funded by grant ANR-10-INSB-04-01 and the Région Ȋle-de-France program DIM1Health. D.P. is supported by the Vaccine Research Institute. P.M. acknowledges the support of a COVID-19 research grant from 'Fonds Wetenschappelijk Onderzoek' /Research Foundation Flanders (grant G0H4420N) and 'Internal Funds KU Leuven' (grant 3M170314). E.S.-L. acknowledges funding from the INCEPTION program (Investissements d’Avenir grant ANR-16-CONV-0005)., We thank the European Health Emergency Preparedness and Response Authority (HERA) for supporting the work being done at Institut Pasteur and UK Leuven. We thank the patients who participated in this study. We thank members of the Virus and Immunity Unit for discussions and help. We thank Ludivine Grzelak for her help in creating an illustration of SARS-CoV-2 variant mutations. We thank N. Aulner and the UtechS Photonic BioImaging (UPBI) core facility (Institut Pasteur), a member of the France BioImaging network, for image acquisition and analysis. The Opera system was co-funded by Institut Pasteur and the Région Ȋle-de-France (DIM1Health). We thank F. Peira, V. Legros, and L. Courtellemont for their help with the cohorts. UZ Leuven, as a national reference center for respiratory pathogens, is supported by Sciensano, which is gratefully acknowledged. We thank Hélène Péré and David Veyer for their help in sequencing viral strains and helpful discussions., ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010), ANR-10-LABX-0077,VRI,Initiative for the creation of a Vaccine Research Institute(2010), ANR-20-COVI-0059,PROTEO-SARS-CoV-2,Protéomique du SARS-CoV-2(2020), ANR-21-CO14-0007,CoronaMito,Conséquences de l'infection par le SRAS-CoV-2 sur la fonction mitochondriale(2021), and ANR-16-CONV-0005,INCEPTION,Institut Convergences pour l'étude de l'Emergence des Pathologies au Travers des Individus et des populatiONs(2016)
- Subjects
Omicron ,SARS-CoV-2 ,Antibody-Dependent Cell Cytotoxicity ,antibodies ,Humans ,COVID-19 ,Antibodies, Monoclonal ,[SDV.IMM.IMM]Life Sciences [q-bio]/Immunology/Immunotherapy ,neutralization ,ADCC ,Antiviral Agents ,General Biochemistry, Genetics and Molecular Biology - Abstract
The emergence of novel Omicron lineages, such as BA.5, may impact the therapeutic efficacy of anti-SARS-CoV-2 neutralizing monoclonal antibodies (mAbs). Here, we evaluated the neutralization and ADCC activity of 6 therapeutic mAbs against Delta, BA.2, BA.4 and BA.5 isolates. The Omicron sub-variants escaped most of the antibodies but remained sensitive to Bebtelovimab and Cilgavimab. Consistent with their shared spike sequence, BA.4 and BA.5 displayed identical neutralization profiles. Sotrovimab was the most efficient at eliciting ADCC. We also analyzed 121 sera from 40 immunocompromised individuals up to 6 months after infusion of 1200 mg of Ronapreve (Imdevimab + Casirivimab), and 300 or 600 mg of Evusheld (Cilgavimab + Tixagevimab). Sera from Ronapreve-treated individuals did not neutralize Omicron subvariants. Evusheld-treated individuals neutralized BA.2 and BA.5, but titers were reduced by 41- and 130-fold, respectively, compared to Delta. A longitudinal evaluation of sera from Evusheld-treated patients revealed a slow decay of mAb levels and neutralization. The decline was more rapid against BA.5. Our data shed light on the antiviral activities of therapeutic mAbs and the duration of effectiveness of Evusheld pre-exposure prophylaxis.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.